blob: 109c8725264f19ee5f8430c20af21fecb9c9c320 [file] [log] [blame]
/*
* Copyright 2019 Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
*/
#ifndef __SIM_GUEST_ABI_HH__
#define __SIM_GUEST_ABI_HH__
#include <functional>
#include <type_traits>
class ThreadContext;
namespace GuestABI
{
/*
* To implement an ABI, a subclass needs to implement a system of
* specializations of these two templates Result and Argument, and define a
* "Position" type.
*
* The Position type carries information about, for instance, how many
* integer registers have been consumed gathering earlier arguments. It
* may contain multiple elements if there are multiple dimensions to track,
* for instance the number of integer and floating point registers used so far.
*
* Result and Argument are class templates instead of function templates so
* that they can be partially specialized if necessary. C++ doesn't let you
* partially specialize function templates because that conflicts with
* template resolution using the function's arguments. Since we already know
* what type we want and we don't need argument based resolution, we can just
* wrap the desired functionality in classes and sidestep the problem.
*
* Also note that these templates have an "Enabled" parameter to support
* std::enable_if style conditional specializations.
*/
template <typename ABI, typename Ret, typename Enabled=void>
struct Result
{
private:
/*
* Store result "ret" into the state accessible through tc.
*
* Note that the declaration below is only to document the expected
* signature and is private so it won't be used by accident.
* Specializations of this Result class should define their own version
* of this method which actually does something and is public.
*/
static void store(ThreadContext *tc, const Ret &ret);
};
template <typename ABI, typename Arg, typename Enabled=void>
struct Argument
{
/*
* Retrieve an argument of type Arg from the state accessible through tc,
* assuming the state represented by "position" has already been used.
* Also update position to account for this argument as well.
*
* Like Result::store above, the declaration below is only to document
* the expected method signature.
*/
static Arg get(ThreadContext *tc, typename ABI::Position &position);
};
/*
* These functions will likely be common among all ABIs and implement the
* mechanism of gathering arguments, calling the target function, and then
* storing the result. They might need to be overridden if, for instance,
* the location of arguments need to be determined in a different order.
* For example, there might be an ABI which gathers arguments starting
* from the last in the list instead of the first. This is unlikely but
* still possible to support by redefining these functions..
*/
// With no arguments to gather, call the target function and store the
// result.
template <typename ABI, typename Ret>
static typename std::enable_if<!std::is_void<Ret>::value, Ret>::type
callFrom(ThreadContext *tc, typename ABI::Position &position,
std::function<Ret(ThreadContext *)> target)
{
Ret ret = target(tc);
Result<ABI, Ret>::store(tc, ret);
return ret;
}
// With no arguments to gather and nothing to return, call the target function.
template <typename ABI>
static void
callFrom(ThreadContext *tc, typename ABI::Position &position,
std::function<void(ThreadContext *)> target)
{
target(tc);
}
// Recursively gather arguments for target from tc until we get to the base
// case above.
template <typename ABI, typename Ret, typename NextArg, typename ...Args>
static typename std::enable_if<!std::is_void<Ret>::value, Ret>::type
callFrom(ThreadContext *tc, typename ABI::Position &position,
std::function<Ret(ThreadContext *, NextArg, Args...)> target)
{
// Extract the next argument from the thread context.
NextArg next = Argument<ABI, NextArg>::get(tc, position);
// Build a partial function which adds the next argument to the call.
std::function<Ret(ThreadContext *, Args...)> partial =
[target,next](ThreadContext *_tc, Args... args) {
return target(_tc, next, args...);
};
// Recursively handle any remaining arguments.
return callFrom<ABI, Ret, Args...>(tc, position, partial);
}
// Recursively gather arguments for target from tc until we get to the base
// case above. This version is for functions that don't return anything.
template <typename ABI, typename NextArg, typename ...Args>
static void
callFrom(ThreadContext *tc, typename ABI::Position &position,
std::function<void(ThreadContext *, NextArg, Args...)> target)
{
// Extract the next argument from the thread context.
NextArg next = Argument<ABI, NextArg>::get(tc, position);
// Build a partial function which adds the next argument to the call.
std::function<void(ThreadContext *, Args...)> partial =
[target,next](ThreadContext *_tc, Args... args) {
target(_tc, next, args...);
};
// Recursively handle any remaining arguments.
callFrom<ABI, Args...>(tc, position, partial);
}
} // namespace GuestABI
// These functions wrap a simulator level function with the given signature.
// The wrapper takes one argument, a thread context to extract arguments from
// and write a result (if any) back to. For convenience, the wrapper also
// returns the result of the wrapped function.
template <typename ABI, typename Ret, typename ...Args>
Ret
invokeSimcall(ThreadContext *tc,
std::function<Ret(ThreadContext *, Args...)> target)
{
// Default construct a Position to track consumed resources. Built in
// types will be zero initialized.
auto position = typename ABI::Position();
return GuestABI::callFrom<ABI, Ret, Args...>(tc, position, target);
}
template <typename ABI, typename Ret, typename ...Args>
Ret
invokeSimcall(ThreadContext *tc, Ret (*target)(ThreadContext *, Args...))
{
return invokeSimcall<ABI>(
tc, std::function<Ret(ThreadContext *, Args...)>(target));
}
template <typename ABI, typename ...Args>
void
invokeSimcall(ThreadContext *tc,
std::function<void(ThreadContext *, Args...)> target)
{
// Default construct a Position to track consumed resources. Built in
// types will be zero initialized.
auto position = typename ABI::Position();
GuestABI::callFrom<ABI, Args...>(tc, position, target);
}
template <typename ABI, typename ...Args>
void
invokeSimcall(ThreadContext *tc, void (*target)(ThreadContext *, Args...))
{
invokeSimcall<ABI>(
tc, std::function<void(ThreadContext *, Args...)>(target));
}
#endif // __SIM_GUEST_ABI_HH__