| /* |
| * Copyright (c) 2001, 2003-2005 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Nathan Binkert |
| */ |
| |
| #ifndef __BASE_INTMATH_HH__ |
| #define __BASE_INTMATH_HH__ |
| |
| #include <cassert> |
| |
| #include "base/logging.hh" |
| #include "base/types.hh" |
| |
| // Returns the prime number one less than n. |
| int prevPrime(int n); |
| |
| // Determine if a number is prime |
| template <class T> |
| inline bool |
| isPrime(const T& n) |
| { |
| T i; |
| |
| if (n == 2 || n == 3) |
| return true; |
| |
| // Don't try every odd number to prove if it is a prime. |
| // Toggle between every 2nd and 4th number. |
| // (This is because every 6th odd number is divisible by 3.) |
| for (i = 5; i*i <= n; i += 6) { |
| if (((n % i) == 0 ) || ((n % (i + 2)) == 0) ) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| inline uint64_t |
| power(uint32_t n, uint32_t e) |
| { |
| if (e > 20) |
| warn("Warning, power() function is quite slow for large exponents\n"); |
| |
| if (e == 0) |
| return 1; |
| |
| uint64_t result = n; |
| uint64_t old_result = 0; |
| for (int x = 1; x < e; x++) { |
| old_result = result; |
| result *= n; |
| if (old_result > result) |
| warn("power() overflowed!\n"); |
| } |
| return result; |
| } |
| |
| |
| inline int |
| floorLog2(unsigned x) |
| { |
| assert(x > 0); |
| |
| int y = 0; |
| |
| if (x & 0xffff0000) { y += 16; x >>= 16; } |
| if (x & 0x0000ff00) { y += 8; x >>= 8; } |
| if (x & 0x000000f0) { y += 4; x >>= 4; } |
| if (x & 0x0000000c) { y += 2; x >>= 2; } |
| if (x & 0x00000002) { y += 1; } |
| |
| return y; |
| } |
| |
| inline int |
| floorLog2(unsigned long x) |
| { |
| assert(x > 0); |
| |
| int y = 0; |
| |
| #if defined(__LP64__) |
| if (x & ULL(0xffffffff00000000)) { y += 32; x >>= 32; } |
| #endif |
| if (x & 0xffff0000) { y += 16; x >>= 16; } |
| if (x & 0x0000ff00) { y += 8; x >>= 8; } |
| if (x & 0x000000f0) { y += 4; x >>= 4; } |
| if (x & 0x0000000c) { y += 2; x >>= 2; } |
| if (x & 0x00000002) { y += 1; } |
| |
| return y; |
| } |
| |
| inline int |
| floorLog2(unsigned long long x) |
| { |
| assert(x > 0); |
| |
| int y = 0; |
| |
| if (x & ULL(0xffffffff00000000)) { y += 32; x >>= 32; } |
| if (x & ULL(0x00000000ffff0000)) { y += 16; x >>= 16; } |
| if (x & ULL(0x000000000000ff00)) { y += 8; x >>= 8; } |
| if (x & ULL(0x00000000000000f0)) { y += 4; x >>= 4; } |
| if (x & ULL(0x000000000000000c)) { y += 2; x >>= 2; } |
| if (x & ULL(0x0000000000000002)) { y += 1; } |
| |
| return y; |
| } |
| |
| inline int |
| floorLog2(int x) |
| { |
| assert(x > 0); |
| return floorLog2((unsigned)x); |
| } |
| |
| inline int |
| floorLog2(long x) |
| { |
| assert(x > 0); |
| return floorLog2((unsigned long)x); |
| } |
| |
| inline int |
| floorLog2(long long x) |
| { |
| assert(x > 0); |
| return floorLog2((unsigned long long)x); |
| } |
| |
| template <class T> |
| inline int |
| ceilLog2(const T& n) |
| { |
| if (n == 1) |
| return 0; |
| |
| return floorLog2(n - (T)1) + 1; |
| } |
| |
| template <class T> |
| inline bool |
| isPowerOf2(const T& n) |
| { |
| return n != 0 && floorLog2(n) == ceilLog2(n); |
| } |
| |
| template <class T> |
| inline T |
| floorPow2(const T& n) |
| { |
| return (T)1 << floorLog2(n); |
| } |
| |
| template <class T> |
| inline T |
| ceilPow2(const T& n) |
| { |
| return (T)1 << ceilLog2(n); |
| } |
| |
| template <class T, class U> |
| inline T |
| divCeil(const T& a, const U& b) |
| { |
| return (a + b - 1) / b; |
| } |
| |
| template <class T, class U> |
| inline T |
| roundUp(const T& val, const U& align) |
| { |
| T mask = (T)align - 1; |
| return (val + mask) & ~mask; |
| } |
| |
| template <class T, class U> |
| inline T |
| roundDown(const T& val, const U& align) |
| { |
| T mask = (T)align - 1; |
| return val & ~mask; |
| } |
| |
| inline bool |
| isHex(char c) |
| { |
| return (c >= '0' && c <= '9') || |
| (c >= 'A' && c <= 'F') || |
| (c >= 'a' && c <= 'f'); |
| } |
| |
| inline bool |
| isOct(char c) |
| { |
| return c >= '0' && c <= '7'; |
| } |
| |
| inline bool |
| isDec(char c) |
| { |
| return c >= '0' && c <= '9'; |
| } |
| |
| inline int |
| hex2Int(char c) |
| { |
| if (c >= '0' && c <= '9') |
| return (c - '0'); |
| |
| if (c >= 'A' && c <= 'F') |
| return (c - 'A') + 10; |
| |
| if (c >= 'a' && c <= 'f') |
| return (c - 'a') + 10; |
| |
| return 0; |
| } |
| |
| #endif // __BASE_INTMATH_HH__ |