blob: 6424549bb37edc26477e33a5ad2189406e763398 [file] [log] [blame]
/*
* Copyright (c) 2013, 2015, 2017-2018,2020 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __DEV_ARM_GENERIC_TIMER_HH__
#define __DEV_ARM_GENERIC_TIMER_HH__
#include <cstdint>
#include <vector>
#include "arch/arm/isa_device.hh"
#include "arch/arm/system.hh"
#include "base/addr_range.hh"
#include "base/bitunion.hh"
#include "base/types.hh"
#include "dev/arm/base_gic.hh"
#include "dev/arm/generic_timer_miscregs_types.hh"
#include "sim/core.hh"
#include "sim/drain.hh"
#include "sim/eventq.hh"
#include "sim/serialize.hh"
#include "sim/sim_object.hh"
/// @file
/// This module implements the global system counter and the local per-CPU
/// architected timers as specified by the ARM Generic Timer extension:
/// Arm ARM (ARM DDI 0487E.a)
/// D11.1.2 - The system counter
/// D11.2 - The AArch64 view of the Generic Timer
/// G6.2 - The AArch32 view of the Generic Timer
/// I2 - System Level Implementation of the Generic Timer
class Checkpoint;
struct SystemCounterParams;
struct GenericTimerParams;
struct GenericTimerFrameParams;
struct GenericTimerMemParams;
/// Abstract class for elements whose events depend on the counting speed
/// of the System Counter
class SystemCounterListener
{
public:
/// Called from the SystemCounter when a change in counting speed occurred
/// Events should be rescheduled properly inside this member function
virtual void notify(void) = 0;
};
/// Global system counter. It is shared by the architected and memory-mapped
/// timers.
class SystemCounter : public SimObject
{
protected:
/// Indicates if the counter is enabled
bool _enabled;
/// Counter frequency (as specified by CNTFRQ).
uint32_t _freq;
/// Counter value (as specified in CNTCV).
uint64_t _value;
/// Value increment in each counter cycle
uint64_t _increment;
/// Frequency modes table with all possible frequencies for the counter
std::vector<uint32_t> _freqTable;
/// Currently selected entry in the table, its contents should match _freq
size_t _activeFreqEntry;
/// Cached copy of the counter period (inverse of the frequency).
Tick _period;
/// Counter cycle start Tick when the counter status affecting
/// its value has been updated
Tick _updateTick;
/// Listeners to changes in counting speed
std::vector<SystemCounterListener *> _listeners;
/// Maximum architectural number of frequency table entries
static constexpr size_t MAX_FREQ_ENTRIES = 1004;
public:
SystemCounter(const SystemCounterParams &p);
/// Validates a System Counter reference
/// @param sys_cnt System counter reference to validate
static void validateCounterRef(SystemCounter *sys_cnt);
/// Indicates if the counter is enabled.
bool enabled() const { return _enabled; }
/// Returns the counter frequency.
uint32_t freq() const { return _freq; }
/// Updates and returns the counter value.
uint64_t value();
/// Returns the value increment
uint64_t increment() const { return _increment; }
/// Returns a reference to the frequency modes table.
std::vector<uint32_t>& freqTable() { return _freqTable; }
/// Returns the currently active frequency table entry.
size_t activeFreqEntry() const { return _activeFreqEntry; }
/// Returns the counter period.
Tick period() const { return _period; }
/// Enables the counter after a CNTCR.EN == 1
void enable();
/// Disables the counter after a CNTCR.EN == 0
void disable();
/// Schedules a counter frequency update after a CNTCR.FCREQ == 1
/// This complies with frequency transitions as per the architecture
/// @param new_freq_entry Index in CNTFID of the new freq
void freqUpdateSchedule(size_t new_freq_entry);
/// Sets the value explicitly from writes to CNTCR.CNTCV
void setValue(uint64_t new_value);
/// Called from System Counter Listeners to register
void registerListener(SystemCounterListener *listener);
/// Returns the tick at which a certain counter value is reached
Tick whenValue(uint64_t target_val);
Tick whenValue(uint64_t cur_val, uint64_t target_val) const;
void serialize(CheckpointOut &cp) const override;
void unserialize(CheckpointIn &cp) override;
private:
// Disable copying
SystemCounter(const SystemCounter &c);
/// Frequency update event handling
EventFunctionWrapper _freqUpdateEvent;
size_t _nextFreqEntry;
/// Callback for the frequency update
void freqUpdateCallback();
/// Updates the counter value.
void updateValue(void);
/// Updates the update tick, normalizes to the lower cycle start tick
void updateTick(void);
/// Notifies counting speed changes to listeners
void notifyListeners(void) const;
};
/// Per-CPU architected timer.
class ArchTimer : public SystemCounterListener, public Drainable,
public Serializable
{
protected:
/// Control register.
BitUnion32(ArchTimerCtrl)
Bitfield<0> enable;
Bitfield<1> imask;
Bitfield<2> istatus;
EndBitUnion(ArchTimerCtrl)
/// Name of this timer.
const std::string _name;
/// Pointer to parent class.
SimObject &_parent;
SystemCounter &_systemCounter;
ArmInterruptPin * const _interrupt;
/// Value of the control register ({CNTP/CNTHP/CNTV}_CTL).
ArchTimerCtrl _control;
/// Programmed limit value for the upcounter ({CNTP/CNTHP/CNTV}_CVAL).
uint64_t _counterLimit;
/// Offset relative to the physical timer (CNTVOFF)
uint64_t _offset;
/**
* Timer settings or the offset has changed, re-evaluate
* trigger condition and raise interrupt if necessary.
*/
void updateCounter();
/// Called when the upcounter reaches the programmed value.
void counterLimitReached();
EventFunctionWrapper _counterLimitReachedEvent;
virtual bool scheduleEvents() { return true; }
public:
ArchTimer(const std::string &name,
SimObject &parent,
SystemCounter &sysctr,
ArmInterruptPin *interrupt);
/// Returns the timer name.
std::string name() const { return _name; }
/// Returns the CompareValue view of the timer.
uint64_t compareValue() const { return _counterLimit; }
/// Sets the CompareValue view of the timer.
void setCompareValue(uint64_t val);
/// Returns the TimerValue view of the timer.
uint32_t timerValue() const { return _counterLimit - value(); }
/// Sets the TimerValue view of the timer.
void setTimerValue(uint32_t val);
/// Sets the control register.
uint32_t control() const { return _control; }
void setControl(uint32_t val);
uint64_t offset() const { return _offset; }
void setOffset(uint64_t val);
/// Returns the value of the counter which this timer relies on.
uint64_t value() const;
Tick whenValue(uint64_t target_val) {
return _systemCounter.whenValue(value(), target_val);
}
void notify(void) override;
// Serializable
void serialize(CheckpointOut &cp) const override;
void unserialize(CheckpointIn &cp) override;
// Drainable
DrainState drain() override;
void drainResume() override;
private:
// Disable copying
ArchTimer(const ArchTimer &t);
};
class ArchTimerKvm : public ArchTimer
{
private:
ArmSystem &system;
public:
ArchTimerKvm(const std::string &name,
ArmSystem &system,
SimObject &parent,
SystemCounter &sysctr,
ArmInterruptPin *interrupt)
: ArchTimer(name, parent, sysctr, interrupt), system(system) {}
protected:
// For ArchTimer's in a GenericTimerISA with Kvm execution about
// to begin, skip rescheduling the event.
// Otherwise, we should reschedule the event (if necessary).
bool scheduleEvents() override {
return !system.validKvmEnvironment();
}
};
class GenericTimer : public SimObject
{
public:
PARAMS(GenericTimer);
GenericTimer(const Params &p);
void serialize(CheckpointOut &cp) const override;
void unserialize(CheckpointIn &cp) override;
public:
void setMiscReg(int misc_reg, unsigned cpu, RegVal val);
RegVal readMiscReg(int misc_reg, unsigned cpu);
protected:
class CoreTimers : public SystemCounterListener, public Serializable
{
public:
CoreTimers(GenericTimer &_parent, ArmSystem &system, unsigned cpu,
ArmInterruptPin *_irqPhysS, ArmInterruptPin *_irqPhysNS,
ArmInterruptPin *_irqVirt, ArmInterruptPin *_irqHyp);
/// Generic Timer parent reference
GenericTimer &parent;
/// System counter frequency as visible from this core
uint32_t cntfrq;
/// Kernel control register
ArmISA::CNTKCTL cntkctl;
/// Hypervisor control register
ArmISA::CNTHCTL cnthctl;
/// Thread (HW) context associated to this PE implementation
ThreadContext *threadContext;
ArmInterruptPin const *irqPhysS;
ArmInterruptPin const *irqPhysNS;
ArmInterruptPin const *irqVirt;
ArmInterruptPin const *irqHyp;
ArchTimerKvm physS;
ArchTimerKvm physNS;
ArchTimerKvm virt;
ArchTimerKvm hyp;
// Event Stream. Events are generated based on a configurable
// transitionBit over the counter value. transitionTo indicates
// the transition direction (0->1 or 1->0)
struct EventStream
{
EventFunctionWrapper event;
uint8_t transitionTo;
uint8_t transitionBit;
uint64_t
eventTargetValue(uint64_t val) const
{
uint64_t bit_val = bits(val, transitionBit);
uint64_t ret_val = mbits(val, 63, transitionBit);
uint64_t incr_val = 1 << transitionBit;
if (bit_val == transitionTo)
incr_val *= 2;
return ret_val + incr_val;
}
};
EventStream physEvStream;
EventStream virtEvStream;
void physEventStreamCallback();
void virtEventStreamCallback();
void eventStreamCallback() const;
void schedNextEvent(EventStream &ev_stream, ArchTimer &timer);
void notify(void) override;
void serialize(CheckpointOut &cp) const override;
void unserialize(CheckpointIn &cp) override;
private:
// Disable copying
CoreTimers(const CoreTimers &c);
};
CoreTimers &getTimers(int cpu_id);
void createTimers(unsigned cpus);
/// System counter reference.
SystemCounter &systemCounter;
/// Per-CPU physical architected timers.
std::vector<std::unique_ptr<CoreTimers>> timers;
protected: // Configuration
/// ARM system containing this timer
ArmSystem &system;
void handleStream(CoreTimers::EventStream *ev_stream,
ArchTimer *timer, RegVal old_cnt_ctl, RegVal cnt_ctl);
};
class GenericTimerISA : public ArmISA::BaseISADevice
{
public:
GenericTimerISA(GenericTimer &_parent, unsigned _cpu)
: parent(_parent), cpu(_cpu) {}
void setMiscReg(int misc_reg, RegVal val) override;
RegVal readMiscReg(int misc_reg) override;
protected:
GenericTimer &parent;
unsigned cpu;
};
class GenericTimerFrame : public PioDevice
{
public:
GenericTimerFrame(const GenericTimerFrameParams &p);
void serialize(CheckpointOut &cp) const override;
void unserialize(CheckpointIn &cp) override;
/// Indicates if this frame implements a virtual timer
bool hasVirtualTimer() const;
/// Returns the virtual offset for this frame if a virtual timer is
/// implemented
uint64_t getVirtOffset() const;
/// Sets the virtual offset for this frame's virtual timer after
/// a write to CNTVOFF
void setVirtOffset(uint64_t new_offset);
/// Indicates if this frame implements a second EL0 view
bool hasEl0View() const;
/// Returns the access bits for this frame
uint8_t getAccessBits() const;
/// Updates the access bits after a write to CNTCTLBase.CNTACR
void setAccessBits(uint8_t data);
/// Indicates if non-secure accesses are allowed to this frame
bool hasNonSecureAccess() const;
/// Allows non-secure accesses after an enabling write to
/// CNTCTLBase.CNTNSAR
void setNonSecureAccess();
/// Indicates if CNTVOFF is readable for this frame
bool hasReadableVoff() const;
protected:
AddrRangeList getAddrRanges() const override;
Tick read(PacketPtr pkt) override;
Tick write(PacketPtr pkt) override;
private:
/// CNTBase/CNTEL0Base (Memory-mapped timer frame)
uint64_t timerRead(Addr addr, size_t size, bool is_sec, bool to_el0) const;
void timerWrite(Addr addr, size_t size, uint64_t data, bool is_sec,
bool to_el0);
const AddrRange timerRange;
AddrRange timerEl0Range;
static const Addr TIMER_CNTPCT_LO = 0x00;
static const Addr TIMER_CNTPCT_HI = 0x04;
static const Addr TIMER_CNTVCT_LO = 0x08;
static const Addr TIMER_CNTVCT_HI = 0x0c;
static const Addr TIMER_CNTFRQ = 0x10;
static const Addr TIMER_CNTEL0ACR = 0x14;
static const Addr TIMER_CNTVOFF_LO = 0x18;
static const Addr TIMER_CNTVOFF_HI = 0x1c;
static const Addr TIMER_CNTP_CVAL_LO = 0x20;
static const Addr TIMER_CNTP_CVAL_HI = 0x24;
static const Addr TIMER_CNTP_TVAL = 0x28;
static const Addr TIMER_CNTP_CTL = 0x2c;
static const Addr TIMER_CNTV_CVAL_LO = 0x30;
static const Addr TIMER_CNTV_CVAL_HI = 0x34;
static const Addr TIMER_CNTV_TVAL = 0x38;
static const Addr TIMER_CNTV_CTL = 0x3c;
/// All MMIO ranges GenericTimerFrame responds to
AddrRangeList addrRanges;
/// System counter reference.
SystemCounter &systemCounter;
/// Physical and virtual timers
ArchTimer physTimer;
ArchTimer virtTimer;
/// Reports access properties of the CNTBase register frame elements
BitUnion8(AccessBits)
Bitfield<5> rwpt;
Bitfield<4> rwvt;
Bitfield<3> rvoff;
Bitfield<2> rfrq;
Bitfield<1> rvct;
Bitfield<0> rpct;
EndBitUnion(AccessBits)
AccessBits accessBits;
// Reports access properties of the CNTEL0Base register frame elements
BitUnion16(AccessBitsEl0)
Bitfield<9> pten;
Bitfield<8> vten;
Bitfield<1> vcten;
Bitfield<0> pcten;
EndBitUnion(AccessBitsEl0)
AccessBitsEl0 accessBitsEl0;
/// Reports whether non-secure accesses are allowed to this frame
bool nonSecureAccess;
ArmSystem &system;
};
class GenericTimerMem : public PioDevice
{
public:
GenericTimerMem(const GenericTimerMemParams &p);
/// Validates a Generic Timer register frame address range
/// @param base_addr Range of the register frame
static void validateFrameRange(const AddrRange &range);
/// Validates an MMIO access permissions
/// @param sys System reference where the acces is being made
/// @param is_sec If the access is to secure memory
static bool validateAccessPerm(ArmSystem &sys, bool is_sec);
protected:
AddrRangeList getAddrRanges() const override;
Tick read(PacketPtr pkt) override;
Tick write(PacketPtr pkt) override;
private:
/// CNTControlBase (System counter control frame)
uint64_t counterCtrlRead(Addr addr, size_t size, bool is_sec) const;
void counterCtrlWrite(Addr addr, size_t size, uint64_t data, bool is_sec);
const AddrRange counterCtrlRange;
BitUnion32(CNTCR)
Bitfield<17,8> fcreq;
Bitfield<2> scen;
Bitfield<1> hdbg;
Bitfield<0> en;
EndBitUnion(CNTCR)
BitUnion32(CNTSR)
Bitfield<31,8> fcack;
EndBitUnion(CNTSR)
static const Addr COUNTER_CTRL_CNTCR = 0x00;
static const Addr COUNTER_CTRL_CNTSR = 0x04;
static const Addr COUNTER_CTRL_CNTCV_LO = 0x08;
static const Addr COUNTER_CTRL_CNTCV_HI = 0x0c;
static const Addr COUNTER_CTRL_CNTSCR = 0x10;
static const Addr COUNTER_CTRL_CNTID = 0x1c;
static const Addr COUNTER_CTRL_CNTFID = 0x20;
/// CNTReadBase (System counter status frame)
uint64_t counterStatusRead(Addr addr, size_t size) const;
void counterStatusWrite(Addr addr, size_t size, uint64_t data);
const AddrRange counterStatusRange;
static const Addr COUNTER_STATUS_CNTCV_LO = 0x00;
static const Addr COUNTER_STATUS_CNTCV_HI = 0x04;
/// CNTCTLBase (Memory-mapped timer global control frame)
uint64_t timerCtrlRead(Addr addr, size_t size, bool is_sec) const;
void timerCtrlWrite(Addr addr, size_t size, uint64_t data, bool is_sec);
const AddrRange timerCtrlRange;
/// ID register for reporting features of implemented timer frames
uint32_t cnttidr;
static const Addr TIMER_CTRL_CNTFRQ = 0x00;
static const Addr TIMER_CTRL_CNTNSAR = 0x04;
static const Addr TIMER_CTRL_CNTTIDR = 0x08;
static const Addr TIMER_CTRL_CNTACR = 0x40;
static const Addr TIMER_CTRL_CNTVOFF_LO = 0x80;
static const Addr TIMER_CTRL_CNTVOFF_HI = 0x84;
/// All MMIO ranges GenericTimerMem responds to
const AddrRangeList addrRanges;
/// System counter reference.
SystemCounter &systemCounter;
/// Maximum architectural number of memory-mapped timer frames
static constexpr size_t MAX_TIMER_FRAMES = 8;
/// Timer frame references
std::vector<GenericTimerFrame *> frames;
ArmSystem &system;
};
#endif // __DEV_ARM_GENERIC_TIMER_HH__