| # Copyright (c) 2012 Mark D. Hill and David A. Wood |
| # Copyright (c) 2015 The University of Wisconsin |
| # All rights reserved. |
| # |
| # Redistribution and use in source and binary forms, with or without |
| # modification, are permitted provided that the following conditions are |
| # met: redistributions of source code must retain the above copyright |
| # notice, this list of conditions and the following disclaimer; |
| # redistributions in binary form must reproduce the above copyright |
| # notice, this list of conditions and the following disclaimer in the |
| # documentation and/or other materials provided with the distribution; |
| # neither the name of the copyright holders nor the names of its |
| # contributors may be used to endorse or promote products derived from |
| # this software without specific prior written permission. |
| # |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| # |
| # Authors: Nilay Vaish and Dibakar Gope |
| |
| from m5.SimObject import SimObject |
| from m5.params import * |
| from m5.proxy import * |
| |
| class IndirectPredictor(SimObject): |
| type = 'IndirectPredictor' |
| cxx_class = 'IndirectPredictor' |
| cxx_header = "cpu/pred/indirect.hh" |
| abstract = True |
| |
| numThreads = Param.Unsigned(Parent.numThreads, "Number of threads") |
| |
| class SimpleIndirectPredictor(IndirectPredictor): |
| type = 'SimpleIndirectPredictor' |
| cxx_class = 'SimpleIndirectPredictor' |
| cxx_header = "cpu/pred/simple_indirect.hh" |
| |
| indirectHashGHR = Param.Bool(True, "Hash branch predictor GHR") |
| indirectHashTargets = Param.Bool(True, "Hash path history targets") |
| indirectSets = Param.Unsigned(256, "Cache sets for indirect predictor") |
| indirectWays = Param.Unsigned(2, "Ways for indirect predictor") |
| indirectTagSize = Param.Unsigned(16, "Indirect target cache tag bits") |
| indirectPathLength = Param.Unsigned(3, |
| "Previous indirect targets to use for path history") |
| indirectGHRBits = Param.Unsigned(13, "Indirect GHR number of bits") |
| instShiftAmt = Param.Unsigned(2, "Number of bits to shift instructions by") |
| |
| class BranchPredictor(SimObject): |
| type = 'BranchPredictor' |
| cxx_class = 'BPredUnit' |
| cxx_header = "cpu/pred/bpred_unit.hh" |
| abstract = True |
| |
| numThreads = Param.Unsigned(Parent.numThreads, "Number of threads") |
| BTBEntries = Param.Unsigned(4096, "Number of BTB entries") |
| BTBTagSize = Param.Unsigned(16, "Size of the BTB tags, in bits") |
| RASSize = Param.Unsigned(16, "RAS size") |
| instShiftAmt = Param.Unsigned(2, "Number of bits to shift instructions by") |
| |
| indirectBranchPred = Param.IndirectPredictor(SimpleIndirectPredictor(), |
| "Indirect branch predictor, set to NULL to disable indirect predictions") |
| |
| class LocalBP(BranchPredictor): |
| type = 'LocalBP' |
| cxx_class = 'LocalBP' |
| cxx_header = "cpu/pred/2bit_local.hh" |
| |
| localPredictorSize = Param.Unsigned(2048, "Size of local predictor") |
| localCtrBits = Param.Unsigned(2, "Bits per counter") |
| |
| |
| class TournamentBP(BranchPredictor): |
| type = 'TournamentBP' |
| cxx_class = 'TournamentBP' |
| cxx_header = "cpu/pred/tournament.hh" |
| |
| localPredictorSize = Param.Unsigned(2048, "Size of local predictor") |
| localCtrBits = Param.Unsigned(2, "Bits per counter") |
| localHistoryTableSize = Param.Unsigned(2048, "size of local history table") |
| globalPredictorSize = Param.Unsigned(8192, "Size of global predictor") |
| globalCtrBits = Param.Unsigned(2, "Bits per counter") |
| choicePredictorSize = Param.Unsigned(8192, "Size of choice predictor") |
| choiceCtrBits = Param.Unsigned(2, "Bits of choice counters") |
| |
| |
| class BiModeBP(BranchPredictor): |
| type = 'BiModeBP' |
| cxx_class = 'BiModeBP' |
| cxx_header = "cpu/pred/bi_mode.hh" |
| |
| globalPredictorSize = Param.Unsigned(8192, "Size of global predictor") |
| globalCtrBits = Param.Unsigned(2, "Bits per counter") |
| choicePredictorSize = Param.Unsigned(8192, "Size of choice predictor") |
| choiceCtrBits = Param.Unsigned(2, "Bits of choice counters") |
| |
| class TAGEBase(SimObject): |
| type = 'TAGEBase' |
| cxx_class = 'TAGEBase' |
| cxx_header = "cpu/pred/tage_base.hh" |
| |
| numThreads = Param.Unsigned(Parent.numThreads, "Number of threads") |
| instShiftAmt = Param.Unsigned(Parent.instShiftAmt, |
| "Number of bits to shift instructions by") |
| |
| nHistoryTables = Param.Unsigned(7, "Number of history tables") |
| minHist = Param.Unsigned(5, "Minimum history size of TAGE") |
| maxHist = Param.Unsigned(130, "Maximum history size of TAGE") |
| |
| tagTableTagWidths = VectorParam.Unsigned( |
| [0, 9, 9, 10, 10, 11, 11, 12], "Tag size in TAGE tag tables") |
| logTagTableSizes = VectorParam.Int( |
| [13, 9, 9, 9, 9, 9, 9, 9], "Log2 of TAGE table sizes") |
| logRatioBiModalHystEntries = Param.Unsigned(2, |
| "Log num of prediction entries for a shared hysteresis bit " \ |
| "for the Bimodal") |
| |
| tagTableCounterBits = Param.Unsigned(3, "Number of tag table counter bits") |
| tagTableUBits = Param.Unsigned(2, "Number of tag table u bits") |
| |
| histBufferSize = Param.Unsigned(2097152, |
| "A large number to track all branch histories(2MEntries default)") |
| |
| pathHistBits = Param.Unsigned(16, "Path history size") |
| logUResetPeriod = Param.Unsigned(18, |
| "Log period in number of branches to reset TAGE useful counters") |
| numUseAltOnNa = Param.Unsigned(1, "Number of USE_ALT_ON_NA counters") |
| useAltOnNaBits = Param.Unsigned(4, "Size of the USE_ALT_ON_NA counter(s)") |
| |
| maxNumAlloc = Param.Unsigned(1, |
| "Max number of TAGE entries allocted on mispredict") |
| |
| # List of enabled TAGE tables. If empty, all are enabled |
| noSkip = VectorParam.Bool([], "Vector of enabled TAGE tables") |
| |
| speculativeHistUpdate = Param.Bool(True, |
| "Use speculative update for histories") |
| |
| # TAGE branch predictor as described in https://www.jilp.org/vol8/v8paper1.pdf |
| # The default sizes below are for the 8C-TAGE configuration (63.5 Kbits) |
| class TAGE(BranchPredictor): |
| type = 'TAGE' |
| cxx_class = 'TAGE' |
| cxx_header = "cpu/pred/tage.hh" |
| tage = Param.TAGEBase(TAGEBase(), "Tage object") |
| |
| class LTAGE_TAGE(TAGEBase): |
| nHistoryTables = 12 |
| minHist = 4 |
| maxHist = 640 |
| tagTableTagWidths = [0, 7, 7, 8, 8, 9, 10, 11, 12, 12, 13, 14, 15] |
| logTagTableSizes = [14, 10, 10, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9] |
| logUResetPeriod = 19 |
| |
| class LoopPredictor(SimObject): |
| type = 'LoopPredictor' |
| cxx_class = 'LoopPredictor' |
| cxx_header = 'cpu/pred/loop_predictor.hh' |
| |
| logSizeLoopPred = Param.Unsigned(8, "Log size of the loop predictor") |
| withLoopBits = Param.Unsigned(7, "Size of the WITHLOOP counter") |
| loopTableAgeBits = Param.Unsigned(8, "Number of age bits per loop entry") |
| loopTableConfidenceBits = Param.Unsigned(2, |
| "Number of confidence bits per loop entry") |
| loopTableTagBits = Param.Unsigned(14, "Number of tag bits per loop entry") |
| loopTableIterBits = Param.Unsigned(14, "Nuber of iteration bits per loop") |
| logLoopTableAssoc = Param.Unsigned(2, "Log loop predictor associativity") |
| |
| # Parameters for enabling modifications to the loop predictor |
| # They have been copied from TAGE-GSC-IMLI |
| # (http://www.irisa.fr/alf/downloads/seznec/TAGE-GSC-IMLI.tar) |
| # |
| # All of them should be disabled to match the original LTAGE implementation |
| # (http://hpca23.cse.tamu.edu/taco/camino/cbp2/cbp-src/realistic-seznec.h) |
| |
| # Add speculation |
| useSpeculation = Param.Bool(False, "Use speculation") |
| |
| # Add hashing for calculating the loop table index |
| useHashing = Param.Bool(False, "Use hashing") |
| |
| # Add a direction bit to the loop table entries |
| useDirectionBit = Param.Bool(False, "Use direction info") |
| |
| # If true, use random to decide whether to allocate or not, and only try |
| # with one entry |
| restrictAllocation = Param.Bool(False, |
| "Restrict the allocation conditions") |
| |
| initialLoopIter = Param.Unsigned(1, "Initial iteration number") |
| initialLoopAge = Param.Unsigned(255, "Initial age value") |
| optionalAgeReset = Param.Bool(True, |
| "Reset age bits optionally in some cases") |
| |
| class TAGE_SC_L_TAGE(TAGEBase): |
| type = 'TAGE_SC_L_TAGE' |
| cxx_class = 'TAGE_SC_L_TAGE' |
| cxx_header = "cpu/pred/tage_sc_l.hh" |
| abstract = True |
| tagTableTagWidths = [0] |
| numUseAltOnNa = 16 |
| pathHistBits = 27 |
| maxNumAlloc = 2 |
| logUResetPeriod = 10 |
| useAltOnNaBits = 5 |
| # TODO No speculation implemented as of now |
| speculativeHistUpdate = False |
| |
| # This size does not set the final sizes of the tables (it is just used |
| # for some calculations) |
| # Instead, the number of TAGE entries comes from shortTagsTageEntries and |
| # longTagsTageEntries |
| logTagTableSize = Param.Unsigned("Log size of each tag table") |
| |
| shortTagsTageFactor = Param.Unsigned( |
| "Factor for calculating the total number of short tags TAGE entries") |
| |
| longTagsTageFactor = Param.Unsigned( |
| "Factor for calculating the total number of long tags TAGE entries") |
| |
| shortTagsSize = Param.Unsigned(8, "Size of the short tags") |
| |
| longTagsSize = Param.Unsigned("Size of the long tags") |
| |
| firstLongTagTable = Param.Unsigned("First table with long tags") |
| |
| truncatePathHist = Param.Bool(True, |
| "Truncate the path history to its configured size") |
| |
| |
| class TAGE_SC_L_TAGE_64KB(TAGE_SC_L_TAGE): |
| type = 'TAGE_SC_L_TAGE_64KB' |
| cxx_class = 'TAGE_SC_L_TAGE_64KB' |
| cxx_header = "cpu/pred/tage_sc_l_64KB.hh" |
| nHistoryTables = 36 |
| |
| minHist = 6 |
| maxHist = 3000 |
| |
| tagTableUBits = 1 |
| |
| logTagTableSizes = [13] |
| |
| # This is used to handle the 2-way associativity |
| # (all odd entries are set to one, and if the corresponding even entry |
| # is set to one, then there is a 2-way associativity for this pair) |
| # Entry 0 is for the bimodal and it is ignored |
| # Note: For this implementation, some odd entries are also set to 0 to save |
| # some bits |
| noSkip = [0,0,1,0,0,0,1,0,0,1,1,1,1,1,1,1,1,1,1, |
| 1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0,0,1] |
| |
| logTagTableSize = 10 |
| shortTagsTageFactor = 10 |
| longTagsTageFactor = 20 |
| |
| longTagsSize = 12 |
| |
| firstLongTagTable = 13 |
| |
| class TAGE_SC_L_TAGE_8KB(TAGE_SC_L_TAGE): |
| type = 'TAGE_SC_L_TAGE_8KB' |
| cxx_class = 'TAGE_SC_L_TAGE_8KB' |
| cxx_header = "cpu/pred/tage_sc_l_8KB.hh" |
| |
| nHistoryTables = 30 |
| |
| minHist = 4 |
| maxHist = 1000 |
| |
| logTagTableSize = 7 |
| shortTagsTageFactor = 9 |
| longTagsTageFactor = 17 |
| longTagsSize = 12 |
| |
| logTagTableSizes = [12] |
| |
| firstLongTagTable = 11 |
| |
| truncatePathHist = False |
| |
| noSkip = [0,0,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1] |
| |
| tagTableUBits = 2 |
| |
| # LTAGE branch predictor as described in |
| # https://www.irisa.fr/caps/people/seznec/L-TAGE.pdf |
| # It is basically a TAGE predictor plus a loop predictor |
| # The differnt TAGE sizes are updated according to the paper values (256 Kbits) |
| class LTAGE(TAGE): |
| type = 'LTAGE' |
| cxx_class = 'LTAGE' |
| cxx_header = "cpu/pred/ltage.hh" |
| |
| tage = LTAGE_TAGE() |
| |
| loop_predictor = Param.LoopPredictor(LoopPredictor(), "Loop predictor") |
| |
| class TAGE_SC_L_LoopPredictor(LoopPredictor): |
| type = 'TAGE_SC_L_LoopPredictor' |
| cxx_class = 'TAGE_SC_L_LoopPredictor' |
| cxx_header = "cpu/pred/tage_sc_l.hh" |
| loopTableAgeBits = 4 |
| loopTableConfidenceBits = 4 |
| loopTableTagBits = 10 |
| loopTableIterBits = 10 |
| useSpeculation = False |
| useHashing = True |
| useDirectionBit = True |
| restrictAllocation = True |
| initialLoopIter = 0 |
| initialLoopAge = 7 |
| optionalAgeReset = False |
| |
| class StatisticalCorrector(SimObject): |
| type = 'StatisticalCorrector' |
| cxx_class = 'StatisticalCorrector' |
| cxx_header = "cpu/pred/statistical_corrector.hh" |
| abstract = True |
| |
| # Statistical corrector parameters |
| |
| numEntriesFirstLocalHistories = Param.Unsigned( |
| "Number of entries for first local histories") |
| |
| bwnb = Param.Unsigned("Num global backward branch GEHL lengths") |
| bwm = VectorParam.Int("Global backward branch GEHL lengths") |
| logBwnb = Param.Unsigned("Log num of global backward branch GEHL entries") |
| |
| lnb = Param.Unsigned("Num first local history GEHL lenghts") |
| lm = VectorParam.Int("First local history GEHL lengths") |
| logLnb = Param.Unsigned("Log number of first local history GEHL entries") |
| |
| inb = Param.Unsigned(1, "Num IMLI GEHL lenghts") |
| im = VectorParam.Int([8], "IMLI history GEHL lengths") |
| logInb = Param.Unsigned("Log number of IMLI GEHL entries") |
| |
| logBias = Param.Unsigned("Log size of Bias tables") |
| |
| logSizeUp = Param.Unsigned(6, |
| "Log size of update threshold counters tables") |
| |
| chooserConfWidth = Param.Unsigned(7, |
| "Number of bits for the chooser counters") |
| |
| updateThresholdWidth = Param.Unsigned(12, |
| "Number of bits for the update threshold counter") |
| |
| pUpdateThresholdWidth = Param.Unsigned(8, |
| "Number of bits for the pUpdate threshold counters") |
| |
| extraWeightsWidth = Param.Unsigned(6, |
| "Number of bits for the extra weights") |
| |
| scCountersWidth = Param.Unsigned(6, "Statistical corrector counters width") |
| |
| # TAGE-SC-L branch predictor as desribed in |
| # https://www.jilp.org/cbp2016/paper/AndreSeznecLimited.pdf |
| # It is a modified LTAGE predictor plus a statistical corrector predictor |
| # The TAGE modifications include bank interleaving and partial associativity |
| # Two different sizes are proposed in the paper: |
| # 8KB => See TAGE_SC_L_8KB below |
| # 64KB => See TAGE_SC_L_64KB below |
| # The TAGE_SC_L_8KB and TAGE_SC_L_64KB classes differ not only on the values |
| # of some parameters, but also in some implementation details |
| # Given this, the TAGE_SC_L class is left abstract |
| # Note that as it is now, this branch predictor does not handle any type |
| # of speculation: All the structures/histories are updated at commit time |
| class TAGE_SC_L(LTAGE): |
| type = 'TAGE_SC_L' |
| cxx_class = 'TAGE_SC_L' |
| cxx_header = "cpu/pred/tage_sc_l.hh" |
| abstract = True |
| |
| statistical_corrector = Param.StatisticalCorrector( |
| "Statistical Corrector") |
| |
| class TAGE_SC_L_64KB_LoopPredictor(TAGE_SC_L_LoopPredictor): |
| logSizeLoopPred = 5 |
| |
| class TAGE_SC_L_8KB_LoopPredictor(TAGE_SC_L_LoopPredictor): |
| logSizeLoopPred = 3 |
| |
| class TAGE_SC_L_64KB_StatisticalCorrector(StatisticalCorrector): |
| type = 'TAGE_SC_L_64KB_StatisticalCorrector' |
| cxx_class = 'TAGE_SC_L_64KB_StatisticalCorrector' |
| cxx_header = "cpu/pred/tage_sc_l_64KB.hh" |
| |
| pnb = Param.Unsigned(3, "Num variation global branch GEHL lengths") |
| pm = VectorParam.Int([25, 16, 9], "Variation global branch GEHL lengths") |
| logPnb = Param.Unsigned(9, |
| "Log number of variation global branch GEHL entries") |
| |
| snb = Param.Unsigned(3, "Num second local history GEHL lenghts") |
| sm = VectorParam.Int([16, 11, 6], "Second local history GEHL lengths") |
| logSnb = Param.Unsigned(9, |
| "Log number of second local history GEHL entries") |
| |
| tnb = Param.Unsigned(2, "Num third local history GEHL lenghts") |
| tm = VectorParam.Int([9, 4], "Third local history GEHL lengths") |
| logTnb = Param.Unsigned(10, |
| "Log number of third local history GEHL entries") |
| |
| imnb = Param.Unsigned(2, "Num second IMLI GEHL lenghts") |
| imm = VectorParam.Int([10, 4], "Second IMLI history GEHL lengths") |
| logImnb = Param.Unsigned(9, "Log number of second IMLI GEHL entries") |
| |
| numEntriesSecondLocalHistories = Param.Unsigned(16, |
| "Number of entries for second local histories") |
| numEntriesThirdLocalHistories = Param.Unsigned(16, |
| "Number of entries for second local histories") |
| |
| numEntriesFirstLocalHistories = 256 |
| |
| logBias = 8 |
| |
| bwnb = 3 |
| bwm = [40, 24, 10] |
| logBwnb = 10 |
| |
| lnb = 3 |
| lm = [11, 6, 3] |
| logLnb = 10 |
| |
| logInb = 8 |
| |
| class TAGE_SC_L_8KB_StatisticalCorrector(StatisticalCorrector): |
| type = 'TAGE_SC_L_8KB_StatisticalCorrector' |
| cxx_class = 'TAGE_SC_L_8KB_StatisticalCorrector' |
| cxx_header = "cpu/pred/tage_sc_l_8KB.hh" |
| gnb = Param.Unsigned(2, "Num global branch GEHL lengths") |
| gm = VectorParam.Int([6, 3], "Global branch GEHL lengths") |
| logGnb = Param.Unsigned(7, "Log number of global branch GEHL entries") |
| |
| numEntriesFirstLocalHistories = 64 |
| |
| logBias = 7 |
| |
| bwnb = 2 |
| logBwnb = 7 |
| bwm = [16, 8] |
| |
| lnb = 2 |
| logLnb = 7 |
| lm = [6, 3] |
| |
| logInb = 7 |
| |
| # 64KB TAGE-SC-L branch predictor as described in |
| # http://www.jilp.org/cbp2016/paper/AndreSeznecLimited.pdf |
| class TAGE_SC_L_64KB(TAGE_SC_L): |
| type = 'TAGE_SC_L_64KB' |
| cxx_class = 'TAGE_SC_L_64KB' |
| cxx_header = "cpu/pred/tage_sc_l_64KB.hh" |
| |
| tage = TAGE_SC_L_TAGE_64KB() |
| loop_predictor = TAGE_SC_L_64KB_LoopPredictor() |
| statistical_corrector = TAGE_SC_L_64KB_StatisticalCorrector() |
| |
| # 8KB TAGE-SC-L branch predictor as described in |
| # http://www.jilp.org/cbp2016/paper/AndreSeznecLimited.pdf |
| class TAGE_SC_L_8KB(TAGE_SC_L): |
| type = 'TAGE_SC_L_8KB' |
| cxx_class = 'TAGE_SC_L_8KB' |
| cxx_header = "cpu/pred/tage_sc_l_8KB.hh" |
| |
| tage = TAGE_SC_L_TAGE_8KB() |
| loop_predictor = TAGE_SC_L_8KB_LoopPredictor() |
| statistical_corrector = TAGE_SC_L_8KB_StatisticalCorrector() |
| |
| class MultiperspectivePerceptron(BranchPredictor): |
| type = 'MultiperspectivePerceptron' |
| cxx_class = 'MultiperspectivePerceptron' |
| cxx_header = 'cpu/pred/multiperspective_perceptron.hh' |
| abstract = True |
| |
| num_filter_entries = Param.Int("Number of filter entries") |
| num_local_histories = Param.Int("Number of local history entries") |
| local_history_length = Param.Int(11, |
| "Length in bits of each history entry") |
| |
| block_size = Param.Int(21, |
| "number of ghist bits in a 'block'; this is the width of an initial " |
| "hash of ghist") |
| pcshift = Param.Int(-10, "Shift for hashing PC") |
| threshold = Param.Int(1, "Threshold for deciding low/high confidence") |
| bias0 = Param.Int(-5, |
| "Bias perceptron output this much on all-bits-zero local history") |
| bias1 = Param.Int(5, |
| "Bias perceptron output this much on all-bits-one local history") |
| biasmostly0 = Param.Int(-1, |
| "Bias perceptron output this much on almost-all-bits-zero local " |
| "history") |
| biasmostly1 = Param.Int(1, |
| "Bias perceptron output this much on almost-all-bits-one local " |
| "history") |
| nbest = Param.Int(20, |
| "Use this many of the top performing tables on a low-confidence " |
| "branch") |
| tunebits = Param.Int(24, "Number of bits in misprediction counters") |
| hshift = Param.Int(-6, |
| "How much to shift initial feauture hash before XORing with PC bits") |
| imli_mask1 = Param.UInt64( |
| "Which tables should have their indices hashed with the first IMLI " |
| "counter") |
| imli_mask4 = Param.UInt64( |
| "Which tables should have their indices hashed with the fourth IMLI " |
| "counter") |
| recencypos_mask = Param.UInt64( |
| "Which tables should have their indices hashed with the recency " |
| "position") |
| fudge = Param.Float(0.245, "Fudge factor to multiply by perceptron output") |
| n_sign_bits = Param.Int(2, "Number of sign bits per magnitude") |
| pcbit = Param.Int(2, "Bit from the PC to use for hashing global history") |
| decay = Param.Int(0, "Whether and how often to decay a random weight") |
| record_mask = Param.Int(191, |
| "Which histories are updated with filtered branch outcomes") |
| hash_taken = Param.Bool(False, |
| "Hash the taken/not taken value with a PC bit") |
| tuneonly = Param.Bool(True, |
| "If true, only count mispredictions of low-confidence branches") |
| extra_rounds = Param.Int(1, |
| "Number of extra rounds of training a single weight on a " |
| "low-confidence prediction") |
| speed = Param.Int(9, "Adaptive theta learning speed") |
| initial_theta = Param.Int(10, "Initial theta") |
| budgetbits = Param.Int("Hardware budget in bits") |
| speculative_update = Param.Bool(False, |
| "Use speculative update for histories") |
| |
| class MultiperspectivePerceptron8KB(MultiperspectivePerceptron): |
| type = 'MultiperspectivePerceptron8KB' |
| cxx_class = 'MultiperspectivePerceptron8KB' |
| cxx_header = 'cpu/pred/multiperspective_perceptron_8KB.hh' |
| budgetbits = 8192 * 8 + 2048 |
| num_local_histories = 48 |
| num_filter_entries = 0 |
| imli_mask1 = 0x6 |
| imli_mask4 = 0x4400 |
| recencypos_mask = 0x100000090 |
| |
| class MultiperspectivePerceptron64KB(MultiperspectivePerceptron): |
| type = 'MultiperspectivePerceptron64KB' |
| cxx_class = 'MultiperspectivePerceptron64KB' |
| cxx_header = 'cpu/pred/multiperspective_perceptron_64KB.hh' |
| budgetbits = 65536 * 8 + 2048 |
| num_local_histories = 510 |
| num_filter_entries = 18025 |
| imli_mask1 = 0xc1000 |
| imli_mask4 = 0x80008000 |
| recencypos_mask = 0x100000090 |