| /* |
| * Copyright 2019 Google Inc. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef __ARCH_ARM_AAPCS64_HH__ |
| #define __ARCH_ARM_AAPCS64_HH__ |
| |
| #include <algorithm> |
| #include <array> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "arch/arm/intregs.hh" |
| #include "arch/arm/utility.hh" |
| #include "base/intmath.hh" |
| #include "cpu/thread_context.hh" |
| #include "sim/guest_abi.hh" |
| #include "sim/proxy_ptr.hh" |
| |
| class ThreadContext; |
| |
| struct Aapcs64 |
| { |
| using UintPtr = uint64_t; |
| |
| struct State |
| { |
| int ngrn=0; // Next general purpose register number. |
| int nsrn=0; // Next SIMD and floating point register number. |
| Addr nsaa; // Next stacked argument address. |
| |
| // The maximum allowed general purpose register number. |
| static const int MAX_GRN = 7; |
| // The maximum allowed SIMD and floating point register number. |
| static const int MAX_SRN = 7; |
| |
| explicit State(const ThreadContext *tc) : |
| nsaa(tc->readIntReg(ArmISA::INTREG_SPX)) |
| {} |
| }; |
| }; |
| |
| namespace GuestABI |
| { |
| |
| /* |
| * Short Vectors |
| */ |
| |
| // A short vector is a machine type that is composed of repeated instances of |
| // one fundamental integral or floating- point type. It may be 8 or 16 bytes |
| // in total size. |
| |
| template <typename T, typename Enabled=void> |
| struct IsAapcs64ShortVector : public std::false_type {}; |
| |
| template <typename E, size_t N> |
| struct IsAapcs64ShortVector<E[N], |
| typename std::enable_if_t< |
| (std::is_integral<E>::value || std::is_floating_point<E>::value) && |
| (sizeof(E) * N == 8 || sizeof(E) * N == 16)>> : |
| public std::true_type |
| {}; |
| |
| /* |
| * Composite Types |
| */ |
| |
| template <typename T, typename Enabled=void> |
| struct IsAapcs64Composite : public std::false_type {}; |
| |
| template <typename T> |
| struct IsAapcs64Composite<T, typename std::enable_if_t< |
| (std::is_array<T>::value || |
| std::is_class<T>::value || |
| std::is_union<T>::value) && |
| // VarArgs is technically a composite type, but it's not a normal argument. |
| !IsVarArgs<T>::value && |
| // Short vectors are also composite types, but don't treat them as one. |
| !IsAapcs64ShortVector<T>::value |
| >> : public std::true_type |
| {}; |
| |
| // Homogeneous Aggregates |
| // These *should* be any aggregate type which has only one type of member, but |
| // we can't actually detect that or manipulate that with templates. Instead, |
| // we approximate that by detecting only arrays with that property. |
| |
| // An Homogeneous Floating-Point Aggregate (HFA) is an Homogeneous Aggregate |
| // with a Fundemental Data Type that is a Floating-Point type and at most four |
| // uniquely addressable members. |
| |
| template <typename T, typename Enabled=void> |
| struct IsAapcs64Hfa : public std::false_type {}; |
| |
| template <typename E, size_t N> |
| struct IsAapcs64Hfa<E[N], |
| typename std::enable_if_t<std::is_floating_point<E>::value && N <= 4>> : |
| public std::true_type |
| {}; |
| |
| // An Homogeneous Short-Vector Aggregate (HVA) is an Homogeneous Aggregate with |
| // a Fundamental Data Type that is a Short-Vector type and at most four |
| // uniquely addressable members. |
| |
| template <typename T, typename Enabled=void> |
| struct IsAapcs64Hva : public std::false_type {}; |
| |
| template <typename E, size_t N> |
| struct IsAapcs64Hva<E[N], |
| typename std::enable_if_t<IsAapcs64ShortVector<E>::value && N <= 4>> : |
| public std::true_type |
| {}; |
| |
| // A shorthand to test if a type is an HVA or an HFA. |
| template <typename T, typename Enabled=void> |
| struct IsAapcs64Hxa : public std::false_type {}; |
| |
| template <typename T> |
| struct IsAapcs64Hxa<T, typename std::enable_if_t< |
| IsAapcs64Hfa<T>::value || IsAapcs64Hva<T>::value>> : |
| public std::true_type |
| {}; |
| |
| struct Aapcs64ArgumentBase |
| { |
| template <typename T> |
| static T |
| loadFromStack(ThreadContext *tc, Aapcs64::State &state) |
| { |
| // The alignment is the larger of 8 or the natural alignment of T. |
| size_t align = std::max<size_t>(8, alignof(T)); |
| // Increase the size to the next multiple of 8. |
| size_t size = roundUp(sizeof(T), 8); |
| |
| // Align the stack. |
| state.nsaa = roundUp(state.nsaa, align); |
| |
| // Extract the value from it. |
| ConstVPtr<T> val(state.nsaa, tc); |
| |
| // Move the nsaa past this argument. |
| state.nsaa += size; |
| |
| // Return the value we extracted. |
| return gtoh(*val, ArmISA::byteOrder(tc)); |
| } |
| }; |
| |
| |
| /* |
| * Floating point and Short-Vector arguments and return values. |
| */ |
| |
| template <typename Float> |
| struct Argument<Aapcs64, Float, typename std::enable_if_t< |
| std::is_floating_point<Float>::value || |
| IsAapcs64ShortVector<Float>::value>> : |
| public Aapcs64ArgumentBase |
| { |
| static Float |
| get(ThreadContext *tc, Aapcs64::State &state) |
| { |
| if (state.nsrn <= state.MAX_SRN) { |
| RegId id(VecRegClass, state.nsrn++); |
| return tc->readVecReg(id).laneView<Float, 0>(); |
| } |
| |
| return loadFromStack<Float>(tc, state); |
| } |
| }; |
| |
| template <typename Float> |
| struct Result<Aapcs64, Float, typename std::enable_if_t< |
| std::is_floating_point<Float>::value || |
| IsAapcs64ShortVector<Float>::value>> |
| { |
| static void |
| store(ThreadContext *tc, const Float &f) |
| { |
| RegId id(VecRegClass, 0); |
| auto reg = tc->readVecReg(id); |
| reg.laneView<Float, 0>() = f; |
| tc->setVecReg(id, reg); |
| } |
| }; |
| |
| |
| /* |
| * Integer arguments and return values. |
| */ |
| |
| // This will pick up Addr as well, which should be used for guest pointers. |
| template <typename Integer> |
| struct Argument<Aapcs64, Integer, typename std::enable_if_t< |
| std::is_integral<Integer>::value && (sizeof(Integer) <= 8)>> : |
| public Aapcs64ArgumentBase |
| { |
| static Integer |
| get(ThreadContext *tc, Aapcs64::State &state) |
| { |
| if (state.ngrn <= state.MAX_GRN) |
| return tc->readIntReg(state.ngrn++); |
| |
| // Max out ngrn since we've effectively saturated it. |
| state.ngrn = state.MAX_GRN + 1; |
| |
| return loadFromStack<Integer>(tc, state); |
| } |
| }; |
| |
| template <typename Integer> |
| struct Argument<Aapcs64, Integer, typename std::enable_if_t< |
| std::is_integral<Integer>::value && (sizeof(Integer) > 8)>> : |
| public Aapcs64ArgumentBase |
| { |
| static Integer |
| get(ThreadContext *tc, Aapcs64::State &state) |
| { |
| if (alignof(Integer) == 16 && (state.ngrn % 2)) |
| state.ngrn++; |
| |
| if (sizeof(Integer) == 16 && state.ngrn + 1 <= state.MAX_GRN) { |
| Integer low = tc->readIntReg(state.ngrn++); |
| Integer high = tc->readIntReg(state.ngrn++); |
| high = high << 64; |
| return high | low; |
| } |
| |
| // Max out ngrn since we've effectively saturated it. |
| state.ngrn = state.MAX_GRN + 1; |
| |
| return loadFromStack<Integer>(tc, state); |
| } |
| }; |
| |
| template <typename Integer> |
| struct Result<Aapcs64, Integer, typename std::enable_if_t< |
| std::is_integral<Integer>::value && (sizeof(Integer) <= 8)>> |
| { |
| static void |
| store(ThreadContext *tc, const Integer &i) |
| { |
| tc->setIntReg(0, i); |
| } |
| }; |
| |
| template <typename Integer> |
| struct Result<Aapcs64, Integer, typename std::enable_if_t< |
| std::is_integral<Integer>::value && (sizeof(Integer) > 8)>> |
| { |
| static void |
| store(ThreadContext *tc, const Integer &i) |
| { |
| tc->setIntReg(0, (uint64_t)i); |
| tc->setIntReg(1, (uint64_t)(i >> 64)); |
| } |
| }; |
| |
| |
| /* |
| * Homogeneous Floating-Point and Short-Vector Aggregates (HFAs and HVAs) |
| * argument and return values. |
| */ |
| |
| template <typename T> |
| struct Aapcs64ArrayType { using Type = void; }; |
| |
| template <typename E, size_t N> |
| struct Aapcs64ArrayType<E[N]> { using Type = E; }; |
| |
| template <typename HA> |
| struct Argument<Aapcs64, HA, typename std::enable_if_t< |
| IsAapcs64Hxa<HA>::value>> : public Aapcs64ArgumentBase |
| { |
| static HA |
| get(ThreadContext *tc, Aapcs64::State &state) |
| { |
| using Elem = typename Aapcs64ArrayType<HA>::Type; |
| constexpr size_t Count = sizeof(HA) / sizeof(Elem); |
| |
| if (state.nsrn + Count - 1 <= state.MAX_SRN) { |
| HA ha; |
| for (int i = 0; i < Count; i++) |
| ha[i] = Argument<Aapcs64, Elem>::get(tc, state); |
| return ha; |
| } |
| |
| // Max out the nsrn since we effectively exhausted it. |
| state.nsrn = state.MAX_SRN + 1; |
| |
| return loadFromStack<HA>(tc, state); |
| } |
| }; |
| |
| template <typename HA> |
| struct Result<Aapcs64, HA, |
| typename std::enable_if_t<IsAapcs64Hxa<HA>::value>> |
| { |
| static HA |
| store(ThreadContext *tc, const HA &ha) |
| { |
| using Elem = typename Aapcs64ArrayType<HA>::Type; |
| constexpr size_t Count = sizeof(HA) / sizeof(Elem); |
| |
| for (int i = 0; i < Count; i++) |
| Result<Aapcs64, Elem>::store(tc, ha[i]); |
| } |
| }; |
| |
| |
| /* |
| * Composite arguments and return values which are not HVAs or HFAs. |
| */ |
| |
| template <typename Composite> |
| struct Argument<Aapcs64, Composite, typename std::enable_if_t< |
| IsAapcs64Composite<Composite>::value && !IsAapcs64Hxa<Composite>::value>> : |
| public Aapcs64ArgumentBase |
| { |
| static Composite |
| get(ThreadContext *tc, Aapcs64::State &state) |
| { |
| if (sizeof(Composite) > 16) { |
| // Composite values larger than 16 which aren't HFAs or HVAs are |
| // kept in a buffer, and the argument is actually a pointer to that |
| // buffer. |
| Addr addr = Argument<Aapcs64, Addr>::get(tc, state); |
| ConstVPtr<Composite> composite(addr, tc); |
| return gtoh(*composite, ArmISA::byteOrder(tc)); |
| } |
| |
| // The size of Composite must be 16 bytes or less after this point. |
| |
| size_t bytes = sizeof(Composite); |
| using Chunk = uint64_t; |
| |
| const int chunk_size = sizeof(Chunk); |
| const int regs = (bytes + chunk_size - 1) / chunk_size; |
| |
| // Can it fit in GPRs? |
| if (state.ngrn + regs - 1 <= state.MAX_GRN) { |
| alignas(alignof(Composite)) uint8_t buf[bytes]; |
| for (int i = 0; i < regs; i++) { |
| Chunk val = tc->readIntReg(state.ngrn++); |
| val = htog(val, ArmISA::byteOrder(tc)); |
| size_t to_copy = std::min<size_t>(bytes, chunk_size); |
| memcpy(buf + i * chunk_size, &val, to_copy); |
| bytes -= to_copy; |
| } |
| return gtoh(*(Composite *)buf, ArmISA::byteOrder(tc)); |
| } |
| |
| // Max out the ngrn since we effectively exhausted it. |
| state.ngrn = state.MAX_GRN; |
| |
| return loadFromStack<Composite>(tc, state); |
| } |
| }; |
| |
| template <typename Composite> |
| struct Result<Aapcs64, Composite, typename std::enable_if_t< |
| IsAapcs64Composite<Composite>::value && !IsAapcs64Hxa<Composite>::value>> |
| { |
| static void |
| store(ThreadContext *tc, const Composite &c) |
| { |
| if (sizeof(Composite) > 16) { |
| Addr addr = tc->readIntReg(ArmISA::INTREG_X8); |
| VPtr<Composite> composite(addr, tc); |
| *composite = htog(c, ArmISA::byteOrder(tc)); |
| return; |
| } |
| |
| // The size of Composite must be 16 bytes or less after this point. |
| |
| size_t bytes = sizeof(Composite); |
| using Chunk = uint64_t; |
| |
| const int chunk_size = sizeof(Chunk); |
| const int regs = (bytes + chunk_size - 1) / chunk_size; |
| |
| Composite cp = htog(c, ArmISA::byteOrder(tc)); |
| uint8_t *buf = (uint8_t *)&cp; |
| for (int i = 0; i < regs; i++) { |
| size_t to_copy = std::min<size_t>(bytes, chunk_size); |
| |
| Chunk val; |
| memcpy(&val, buf, to_copy); |
| val = gtoh(val, ArmISA::byteOrder(tc)); |
| |
| tc->setIntReg(i, val); |
| |
| bytes -= to_copy; |
| buf += to_copy; |
| } |
| } |
| }; |
| |
| } // namespace GuestABI |
| |
| #endif // __ARCH_ARM_AAPCS64_HH__ |