| /* |
| * Copyright (c) 2017 ARM Limited |
| * All rights reserved. |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "mem/ruby/slicc_interface/AbstractController.hh" |
| |
| #include "debug/RubyQueue.hh" |
| #include "mem/protocol/MemoryMsg.hh" |
| #include "mem/ruby/network/Network.hh" |
| #include "mem/ruby/system/GPUCoalescer.hh" |
| #include "mem/ruby/system/RubySystem.hh" |
| #include "mem/ruby/system/Sequencer.hh" |
| #include "sim/system.hh" |
| |
| AbstractController::AbstractController(const Params *p) |
| : MemObject(p), Consumer(this), m_version(p->version), |
| m_clusterID(p->cluster_id), |
| m_masterId(p->system->getMasterId(this)), m_is_blocking(false), |
| m_number_of_TBEs(p->number_of_TBEs), |
| m_transitions_per_cycle(p->transitions_per_cycle), |
| m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency), |
| memoryPort(csprintf("%s.memory", name()), this, ""), |
| addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()) |
| { |
| if (m_version == 0) { |
| // Combine the statistics from all controllers |
| // of this particular type. |
| Stats::registerDumpCallback(new StatsCallback(this)); |
| } |
| } |
| |
| void |
| AbstractController::init() |
| { |
| params()->ruby_system->registerAbstractController(this); |
| m_delayHistogram.init(10); |
| uint32_t size = Network::getNumberOfVirtualNetworks(); |
| for (uint32_t i = 0; i < size; i++) { |
| m_delayVCHistogram.push_back(new Stats::Histogram()); |
| m_delayVCHistogram[i]->init(10); |
| } |
| } |
| |
| void |
| AbstractController::resetStats() |
| { |
| m_delayHistogram.reset(); |
| uint32_t size = Network::getNumberOfVirtualNetworks(); |
| for (uint32_t i = 0; i < size; i++) { |
| m_delayVCHistogram[i]->reset(); |
| } |
| } |
| |
| void |
| AbstractController::regStats() |
| { |
| MemObject::regStats(); |
| |
| m_fully_busy_cycles |
| .name(name() + ".fully_busy_cycles") |
| .desc("cycles for which number of transistions == max transitions") |
| .flags(Stats::nozero); |
| } |
| |
| void |
| AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay) |
| { |
| assert(virtualNetwork < m_delayVCHistogram.size()); |
| m_delayHistogram.sample(delay); |
| m_delayVCHistogram[virtualNetwork]->sample(delay); |
| } |
| |
| void |
| AbstractController::stallBuffer(MessageBuffer* buf, Addr addr) |
| { |
| if (m_waiting_buffers.count(addr) == 0) { |
| MsgVecType* msgVec = new MsgVecType; |
| msgVec->resize(m_in_ports, NULL); |
| m_waiting_buffers[addr] = msgVec; |
| } |
| DPRINTF(RubyQueue, "stalling %s port %d addr %#x\n", buf, m_cur_in_port, |
| addr); |
| assert(m_in_ports > m_cur_in_port); |
| (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf; |
| } |
| |
| void |
| AbstractController::wakeUpBuffers(Addr addr) |
| { |
| if (m_waiting_buffers.count(addr) > 0) { |
| // |
| // Wake up all possible lower rank (i.e. lower priority) buffers that could |
| // be waiting on this message. |
| // |
| for (int in_port_rank = m_cur_in_port - 1; |
| in_port_rank >= 0; |
| in_port_rank--) { |
| if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) { |
| (*(m_waiting_buffers[addr]))[in_port_rank]-> |
| reanalyzeMessages(addr, clockEdge()); |
| } |
| } |
| delete m_waiting_buffers[addr]; |
| m_waiting_buffers.erase(addr); |
| } |
| } |
| |
| void |
| AbstractController::wakeUpAllBuffers(Addr addr) |
| { |
| if (m_waiting_buffers.count(addr) > 0) { |
| // |
| // Wake up all possible lower rank (i.e. lower priority) buffers that could |
| // be waiting on this message. |
| // |
| for (int in_port_rank = m_in_ports - 1; |
| in_port_rank >= 0; |
| in_port_rank--) { |
| if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) { |
| (*(m_waiting_buffers[addr]))[in_port_rank]-> |
| reanalyzeMessages(addr, clockEdge()); |
| } |
| } |
| delete m_waiting_buffers[addr]; |
| m_waiting_buffers.erase(addr); |
| } |
| } |
| |
| void |
| AbstractController::wakeUpAllBuffers() |
| { |
| // |
| // Wake up all possible buffers that could be waiting on any message. |
| // |
| |
| std::vector<MsgVecType*> wokeUpMsgVecs; |
| MsgBufType wokeUpMsgBufs; |
| |
| if (m_waiting_buffers.size() > 0) { |
| for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin(); |
| buf_iter != m_waiting_buffers.end(); |
| ++buf_iter) { |
| for (MsgVecType::iterator vec_iter = buf_iter->second->begin(); |
| vec_iter != buf_iter->second->end(); |
| ++vec_iter) { |
| // |
| // Make sure the MessageBuffer has not already be reanalyzed |
| // |
| if (*vec_iter != NULL && |
| (wokeUpMsgBufs.count(*vec_iter) == 0)) { |
| (*vec_iter)->reanalyzeAllMessages(clockEdge()); |
| wokeUpMsgBufs.insert(*vec_iter); |
| } |
| } |
| wokeUpMsgVecs.push_back(buf_iter->second); |
| } |
| |
| for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin(); |
| wb_iter != wokeUpMsgVecs.end(); |
| ++wb_iter) { |
| delete (*wb_iter); |
| } |
| |
| m_waiting_buffers.clear(); |
| } |
| } |
| |
| void |
| AbstractController::blockOnQueue(Addr addr, MessageBuffer* port) |
| { |
| m_is_blocking = true; |
| m_block_map[addr] = port; |
| } |
| |
| bool |
| AbstractController::isBlocked(Addr addr) const |
| { |
| return m_is_blocking && (m_block_map.find(addr) != m_block_map.end()); |
| } |
| |
| void |
| AbstractController::unblock(Addr addr) |
| { |
| m_block_map.erase(addr); |
| if (m_block_map.size() == 0) { |
| m_is_blocking = false; |
| } |
| } |
| |
| bool |
| AbstractController::isBlocked(Addr addr) |
| { |
| return (m_block_map.count(addr) > 0); |
| } |
| |
| BaseMasterPort & |
| AbstractController::getMasterPort(const std::string &if_name, |
| PortID idx) |
| { |
| return memoryPort; |
| } |
| |
| void |
| AbstractController::queueMemoryRead(const MachineID &id, Addr addr, |
| Cycles latency) |
| { |
| RequestPtr req = std::make_shared<Request>( |
| addr, RubySystem::getBlockSizeBytes(), 0, m_masterId); |
| |
| PacketPtr pkt = Packet::createRead(req); |
| uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()]; |
| pkt->dataDynamic(newData); |
| |
| SenderState *s = new SenderState(id); |
| pkt->pushSenderState(s); |
| |
| // Use functional rather than timing accesses during warmup |
| if (RubySystem::getWarmupEnabled()) { |
| memoryPort.sendFunctional(pkt); |
| recvTimingResp(pkt); |
| return; |
| } |
| |
| memoryPort.schedTimingReq(pkt, clockEdge(latency)); |
| } |
| |
| void |
| AbstractController::queueMemoryWrite(const MachineID &id, Addr addr, |
| Cycles latency, const DataBlock &block) |
| { |
| RequestPtr req = std::make_shared<Request>( |
| addr, RubySystem::getBlockSizeBytes(), 0, m_masterId); |
| |
| PacketPtr pkt = Packet::createWrite(req); |
| pkt->allocate(); |
| pkt->setData(block.getData(0, RubySystem::getBlockSizeBytes())); |
| |
| SenderState *s = new SenderState(id); |
| pkt->pushSenderState(s); |
| |
| // Use functional rather than timing accesses during warmup |
| if (RubySystem::getWarmupEnabled()) { |
| memoryPort.sendFunctional(pkt); |
| recvTimingResp(pkt); |
| return; |
| } |
| |
| // Create a block and copy data from the block. |
| memoryPort.schedTimingReq(pkt, clockEdge(latency)); |
| } |
| |
| void |
| AbstractController::queueMemoryWritePartial(const MachineID &id, Addr addr, |
| Cycles latency, |
| const DataBlock &block, int size) |
| { |
| RequestPtr req = std::make_shared<Request>(addr, size, 0, m_masterId); |
| |
| PacketPtr pkt = Packet::createWrite(req); |
| pkt->allocate(); |
| pkt->setData(block.getData(getOffset(addr), size)); |
| |
| SenderState *s = new SenderState(id); |
| pkt->pushSenderState(s); |
| |
| // Create a block and copy data from the block. |
| memoryPort.schedTimingReq(pkt, clockEdge(latency)); |
| } |
| |
| void |
| AbstractController::functionalMemoryRead(PacketPtr pkt) |
| { |
| memoryPort.sendFunctional(pkt); |
| } |
| |
| int |
| AbstractController::functionalMemoryWrite(PacketPtr pkt) |
| { |
| int num_functional_writes = 0; |
| |
| // Check the buffer from the controller to the memory. |
| if (memoryPort.trySatisfyFunctional(pkt)) { |
| num_functional_writes++; |
| } |
| |
| // Update memory itself. |
| memoryPort.sendFunctional(pkt); |
| return num_functional_writes + 1; |
| } |
| |
| void |
| AbstractController::recvTimingResp(PacketPtr pkt) |
| { |
| assert(getMemoryQueue()); |
| assert(pkt->isResponse()); |
| |
| std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge()); |
| (*msg).m_addr = pkt->getAddr(); |
| (*msg).m_Sender = m_machineID; |
| |
| SenderState *s = dynamic_cast<SenderState *>(pkt->senderState); |
| (*msg).m_OriginalRequestorMachId = s->id; |
| delete s; |
| |
| if (pkt->isRead()) { |
| (*msg).m_Type = MemoryRequestType_MEMORY_READ; |
| (*msg).m_MessageSize = MessageSizeType_Response_Data; |
| |
| // Copy data from the packet |
| (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0, |
| RubySystem::getBlockSizeBytes()); |
| } else if (pkt->isWrite()) { |
| (*msg).m_Type = MemoryRequestType_MEMORY_WB; |
| (*msg).m_MessageSize = MessageSizeType_Writeback_Control; |
| } else { |
| panic("Incorrect packet type received from memory controller!"); |
| } |
| |
| getMemoryQueue()->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1))); |
| delete pkt; |
| } |
| |
| Tick |
| AbstractController::recvAtomic(PacketPtr pkt) |
| { |
| return ticksToCycles(memoryPort.sendAtomic(pkt)); |
| } |
| |
| MachineID |
| AbstractController::mapAddressToMachine(Addr addr, MachineType mtype) const |
| { |
| NodeID node = m_net_ptr->addressToNodeID(addr, mtype); |
| MachineID mach = {mtype, node}; |
| return mach; |
| } |
| |
| bool |
| AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt) |
| { |
| controller->recvTimingResp(pkt); |
| return true; |
| } |
| |
| AbstractController::MemoryPort::MemoryPort(const std::string &_name, |
| AbstractController *_controller, |
| const std::string &_label) |
| : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue), |
| reqQueue(*_controller, *this, _label), |
| snoopRespQueue(*_controller, *this, _label), |
| controller(_controller) |
| { |
| } |