|  | /* Copyright (c) 2012 Massachusetts Institute of Technology | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to deal | 
|  | * in the Software without restriction, including without limitation the rights | 
|  | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | * copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
|  | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | * THE SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include "model/std_cells/AND2.h" | 
|  |  | 
|  | #include <cmath> | 
|  |  | 
|  | #include "model/PortInfo.h" | 
|  | #include "model/TransitionInfo.h" | 
|  | #include "model/EventInfo.h" | 
|  | #include "model/std_cells/StdCellLib.h" | 
|  | #include "model/std_cells/CellMacros.h" | 
|  | #include "model/timing_graph/ElectricalNet.h" | 
|  | #include "model/timing_graph/ElectricalDriver.h" | 
|  | #include "model/timing_graph/ElectricalLoad.h" | 
|  | #include "model/timing_graph/ElectricalDelay.h" | 
|  |  | 
|  | namespace DSENT | 
|  | { | 
|  | using std::max; | 
|  |  | 
|  | AND2::AND2(const String& instance_name_, const TechModel* tech_model_) | 
|  | : StdCell(instance_name_, tech_model_) | 
|  | { | 
|  | initProperties(); | 
|  | } | 
|  |  | 
|  | AND2::~AND2() | 
|  | {} | 
|  |  | 
|  | void AND2::initProperties() | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | void AND2::constructModel() | 
|  | { | 
|  | // All constructModel should do is create Area/NDDPower/Energy Results as | 
|  | // well as instantiate any sub-instances using only the hard parameters | 
|  |  | 
|  | createInputPort("A"); | 
|  | createInputPort("B"); | 
|  | createOutputPort("Y"); | 
|  |  | 
|  | createLoad("A_Cap"); | 
|  | createLoad("B_Cap"); | 
|  | createDelay("A_to_Y_delay"); | 
|  | createDelay("B_to_Y_delay"); | 
|  | createDriver("Y_Ron", true); | 
|  |  | 
|  | ElectricalLoad* a_cap = getLoad("A_Cap"); | 
|  | ElectricalLoad* b_cap = getLoad("B_Cap"); | 
|  | ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay"); | 
|  | ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay"); | 
|  | ElectricalDriver* y_ron = getDriver("Y_Ron"); | 
|  |  | 
|  | getNet("A")->addDownstreamNode(a_cap); | 
|  | getNet("B")->addDownstreamNode(b_cap); | 
|  | a_cap->addDownstreamNode(a_to_y_delay); | 
|  | b_cap->addDownstreamNode(b_to_y_delay); | 
|  | a_to_y_delay->addDownstreamNode(y_ron); | 
|  | b_to_y_delay->addDownstreamNode(y_ron); | 
|  | y_ron->addDownstreamNode(getNet("Y")); | 
|  |  | 
|  | // Create Area result | 
|  | // Create NDD Power result | 
|  | createElectricalAtomicResults(); | 
|  | getEventInfo("Idle")->setStaticTransitionInfos(); | 
|  | // Create AND Event Energy Result | 
|  | createElectricalEventAtomicResult("AND2"); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | void AND2::updateModel() | 
|  | { | 
|  | // All updateModel should do is calculate numbers for the Area/NDDPower/Energy | 
|  | // Results as anything else that needs to be done using either soft or hard parameters | 
|  |  | 
|  | // Get parameters | 
|  | double drive_strength = getDrivingStrength(); | 
|  | Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache(); | 
|  |  | 
|  | // Standard cell cache string | 
|  | String cell_name = "AND2_X" + (String) drive_strength; | 
|  |  | 
|  | // Get timing parameters | 
|  | getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A")); | 
|  | getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B")); | 
|  | getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y")); | 
|  | getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y")); | 
|  | getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y")); | 
|  |  | 
|  | // Set the cell area | 
|  | getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea")); | 
|  | getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea")); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | void AND2::evaluateModel() | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | void AND2::useModel() | 
|  | { | 
|  | // Get parameters | 
|  | double drive_strength = getDrivingStrength(); | 
|  | Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache(); | 
|  |  | 
|  | // Standard cell cache string | 
|  | String cell_name = "AND2_X" + (String) drive_strength; | 
|  |  | 
|  | // Propagate the transition info and get the 0->1 transtion count | 
|  | propagateTransitionInfo(); | 
|  | double P_A = getInputPort("A")->getTransitionInfo().getProbability1(); | 
|  | double P_B = getInputPort("B")->getTransitionInfo().getProbability1(); | 
|  | double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01(); | 
|  |  | 
|  | // Calculate leakage | 
|  | double leakage = 0; | 
|  | leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B); | 
|  | leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B; | 
|  | leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B); | 
|  | leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B; | 
|  | getNddPowerResult("Leakage")->setValue(leakage); | 
|  |  | 
|  | // Get VDD | 
|  | double vdd = getTechModel()->get("Vdd"); | 
|  |  | 
|  | // Get capacitances | 
|  | double y_b_cap = cache->get(cell_name + "->Cap->Y_b"); | 
|  | double y_cap = cache->get(cell_name + "->Cap->Y"); | 
|  | double y_load_cap = getNet("Y")->getTotalDownstreamCap(); | 
|  |  | 
|  | // Calculate AND2Event energy | 
|  | double energy_per_trans_01 = (y_b_cap + y_cap + y_load_cap) * vdd * vdd; | 
|  | getEventResult("AND2")->setValue(energy_per_trans_01 * Y_num_trans_01); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | void AND2::propagateTransitionInfo() | 
|  | { | 
|  | // Get input signal transition info | 
|  | const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo(); | 
|  | const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo(); | 
|  |  | 
|  | double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()); | 
|  | const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult); | 
|  | const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult); | 
|  |  | 
|  | double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult; | 
|  | double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult; | 
|  | double A_prob_10 = A_prob_01; | 
|  | double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult; | 
|  | double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult; | 
|  | double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult; | 
|  | double B_prob_10 = B_prob_01; | 
|  | double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult; | 
|  |  | 
|  | // Set output transition info | 
|  | double Y_prob_00 = A_prob_00 + | 
|  | A_prob_01 * (B_prob_00 + B_prob_10) + | 
|  | A_prob_10 * (B_prob_00 + B_prob_01) + | 
|  | A_prob_11 * B_prob_00; | 
|  | double Y_prob_01 = A_prob_01 * (B_prob_01 + B_prob_11) + | 
|  | A_prob_11 * B_prob_01; | 
|  | double Y_prob_11 = A_prob_11 * B_prob_11; | 
|  |  | 
|  | // Check that probabilities add up to 1.0 with some finite tolerance | 
|  | ASSERT(LibUtil::Math::isEqual(Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11, 1.0), "[Error] " + getInstanceName() + | 
|  | "Output transition probabilities must add up to 1 (" + (String) Y_prob_00 + ", " + | 
|  | (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!"); | 
|  |  | 
|  | // Turn probability of transitions per cycle into number of transitions per time unit | 
|  | TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult); | 
|  | getOutputPort("Y")->setTransitionInfo(trans_Y); | 
|  | return; | 
|  | } | 
|  |  | 
|  | void AND2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_) | 
|  | { | 
|  | // Standard cell cache string | 
|  | String cell_name = "AND2_X" + (String) drive_strength_; | 
|  |  | 
|  | Log::printLine("=== " + cell_name + " ==="); | 
|  |  | 
|  | // Get parameters | 
|  | double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted"); | 
|  | Map<double>* cache = cell_lib_->getStdCellCache(); | 
|  |  | 
|  | // Now actually build the full standard cell model | 
|  | // Create the two input ports | 
|  | createInputPort("A"); | 
|  | createInputPort("B"); | 
|  | createOutputPort("Y"); | 
|  |  | 
|  | createNet("Y_b"); | 
|  |  | 
|  | // Adds macros | 
|  | CellMacros::addNand2(this, "NAND2", false, true, true, "A", "B", "Y_b"); | 
|  | CellMacros::addInverter(this, "INV", false, true, "Y_b", "Y"); | 
|  | CellMacros::updateNand2(this, "NAND2", drive_strength_ * 0.5); | 
|  | CellMacros::updateInverter(this, "INV", drive_strength_ * 1.0); | 
|  |  | 
|  | // Cache area result | 
|  | double area = 0.0; | 
|  | area += gate_pitch * getTotalHeight() * 1; | 
|  | area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND2_GatePitches").toDouble(); | 
|  | area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV_GatePitches").toDouble(); | 
|  | cache->set(cell_name + "->ActiveArea", area); | 
|  | Log::printLine(cell_name + "->ActiveArea=" + (String) area); | 
|  |  | 
|  | // -------------------------------------------------------------------- | 
|  | // Leakage Model Calculation | 
|  | // -------------------------------------------------------------------- | 
|  | double leakage_00 = getGenProperties()->get("NAND2_LeakagePower_00").toDouble() + | 
|  | getGenProperties()->get("INV_LeakagePower_0").toDouble(); | 
|  | double leakage_01 = getGenProperties()->get("NAND2_LeakagePower_01").toDouble() + | 
|  | getGenProperties()->get("INV_LeakagePower_0").toDouble(); | 
|  | double leakage_10 = getGenProperties()->get("NAND2_LeakagePower_10").toDouble() + | 
|  | getGenProperties()->get("INV_LeakagePower_0").toDouble(); | 
|  | double leakage_11 = getGenProperties()->get("NAND2_LeakagePower_11").toDouble() + | 
|  | getGenProperties()->get("INV_LeakagePower_1").toDouble(); | 
|  | cache->set(cell_name + "->Leakage->!A!B", leakage_00); | 
|  | cache->set(cell_name + "->Leakage->!AB", leakage_01); | 
|  | cache->set(cell_name + "->Leakage->A!B", leakage_10); | 
|  | cache->set(cell_name + "->Leakage->AB", leakage_11); | 
|  | Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00); | 
|  | Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01); | 
|  | Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10); | 
|  | Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11); | 
|  | // -------------------------------------------------------------------- | 
|  |  | 
|  | // -------------------------------------------------------------------- | 
|  | // Get Node Capacitances | 
|  | // -------------------------------------------------------------------- | 
|  | double a_cap = getNet("A")->getTotalDownstreamCap(); | 
|  | double b_cap = getNet("B")->getTotalDownstreamCap(); | 
|  | double y_b_cap = getNet("Y_b")->getTotalDownstreamCap(); | 
|  | double y_cap = getNet("Y")->getTotalDownstreamCap(); | 
|  |  | 
|  | cache->set(cell_name + "->Cap->A", a_cap); | 
|  | cache->set(cell_name + "->Cap->B", b_cap); | 
|  | cache->set(cell_name + "->Cap->Y_b", y_b_cap); | 
|  | cache->set(cell_name + "->Cap->Y", y_cap); | 
|  | Log::printLine(cell_name + "->Cap->A=" + (String) a_cap); | 
|  | Log::printLine(cell_name + "->Cap->B=" + (String) b_cap); | 
|  | Log::printLine(cell_name + "->Cap->Y=" + (String) y_b_cap); | 
|  | Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap); | 
|  | // -------------------------------------------------------------------- | 
|  |  | 
|  | // -------------------------------------------------------------------- | 
|  | // Build Internal Delay Model | 
|  | // -------------------------------------------------------------------- | 
|  | double y_ron = getDriver("INV_RonZN")->getOutputRes(); | 
|  | double a_to_y_delay = getDriver("NAND2_RonZN")->calculateDelay() + | 
|  | getDriver("INV_RonZN")->calculateDelay(); | 
|  | double b_to_y_delay = getDriver("NAND2_RonZN")->calculateDelay() + | 
|  | getDriver("INV_RonZN")->calculateDelay(); | 
|  |  | 
|  | cache->set(cell_name + "->DriveRes->Y", y_ron); | 
|  | cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay); | 
|  | cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay); | 
|  | Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron); | 
|  | Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay); | 
|  | Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay); | 
|  | // -------------------------------------------------------------------- | 
|  |  | 
|  | return; | 
|  |  | 
|  | } | 
|  | } // namespace DSENT |