blob: 52952040392d4d8a17b3558d226e179377d7a511 [file] [log] [blame]
/*
* Copyright (c) 2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Matt Evans
*/
#include "dev/arm/vgic.hh"
#include "base/trace.hh"
#include "debug/Checkpoint.hh"
#include "debug/VGIC.hh"
#include "dev/arm/base_gic.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
VGic::VGic(const Params *p)
: PioDevice(p), platform(p->platform), gic(p->gic), vcpuAddr(p->vcpu_addr),
hvAddr(p->hv_addr), pioDelay(p->pio_delay),
maintInt(p->ppint)
{
for (int x = 0; x < VGIC_CPU_MAX; x++) {
postVIntEvent[x] = new EventFunctionWrapper(
[this, x]{ processPostVIntEvent(x); },
"Post VInterrupt to CPU");
maintIntPosted[x] = false;
vIntPosted[x] = false;
}
assert(sys->numRunningContexts() <= VGIC_CPU_MAX);
}
VGic::~VGic()
{
for (int x = 0; x < VGIC_CPU_MAX; x++)
delete postVIntEvent[x];
}
Tick
VGic::read(PacketPtr pkt)
{
Addr addr = pkt->getAddr();
if (addr >= vcpuAddr && addr < vcpuAddr + GICV_SIZE)
return readVCpu(pkt);
else if (addr >= hvAddr && addr < hvAddr + GICH_REG_SIZE)
return readCtrl(pkt);
else
panic("Read to unknown address %#x\n", pkt->getAddr());
}
Tick
VGic::write(PacketPtr pkt)
{
Addr addr = pkt->getAddr();
if (addr >= vcpuAddr && addr < vcpuAddr + GICV_SIZE)
return writeVCpu(pkt);
else if (addr >= hvAddr && addr < hvAddr + GICH_REG_SIZE)
return writeCtrl(pkt);
else
panic("Write to unknown address %#x\n", pkt->getAddr());
}
Tick
VGic::readVCpu(PacketPtr pkt)
{
Addr daddr = pkt->getAddr() - vcpuAddr;
ContextID ctx_id = pkt->req->contextId();
assert(ctx_id < VGIC_CPU_MAX);
struct vcpuIntData *vid = &vcpuData[ctx_id];
DPRINTF(VGIC, "VGIC VCPU read register %#x\n", daddr);
switch (daddr) {
case GICV_CTLR:
pkt->set<uint32_t>(vid->vctrl);
break;
case GICV_IAR: {
int i = findHighestPendingLR(vid);
if (i < 0 || !vid->vctrl.En) {
pkt->set<uint32_t>(1023); // "No int" marker
} else {
ListReg *lr = &vid->LR[i];
pkt->set<uint32_t>(lr->VirtualID |
(((int)lr->CpuID) << 10));
// We don't support auto-EOI of HW interrupts via real GIC!
// Fortunately, KVM doesn't use this. How about Xen...? Ulp!
if (lr->HW)
panic("VGIC does not support 'HW' List Register feature (LR %#x)!\n",
*lr);
lr->State = LR_ACTIVE;
DPRINTF(VGIC, "Consumed interrupt %d (cpu%d) from LR%d (EOI%d)\n",
lr->VirtualID, lr->CpuID, i, lr->EOI);
}
} break;
default:
panic("VGIC VCPU read of bad address %#x\n", daddr);
}
updateIntState(ctx_id);
pkt->makeAtomicResponse();
return pioDelay;
}
Tick
VGic::readCtrl(PacketPtr pkt)
{
Addr daddr = pkt->getAddr() - hvAddr;
ContextID ctx_id = pkt->req->contextId();
DPRINTF(VGIC, "VGIC HVCtrl read register %#x\n", daddr);
/* Munge the address: 0-0xfff is the usual space banked by requester CPU.
* Anything > that is 0x200-sized slices of 'per CPU' regs.
*/
if (daddr & ~0x1ff) {
ctx_id = (daddr >> 9);
if (ctx_id > 8)
panic("VGIC: Weird unbanked hv ctrl address %#x!\n", daddr);
daddr &= ~0x1ff;
}
assert(ctx_id < VGIC_CPU_MAX);
struct vcpuIntData *vid = &vcpuData[ctx_id];
switch (daddr) {
case GICH_HCR:
pkt->set<uint32_t>(vid->hcr);
break;
case GICH_VTR:
pkt->set<uint32_t>(0x44000000 | (NUM_LR - 1));
break;
case GICH_VMCR:
pkt->set<uint32_t>(
((uint32_t)vid->VMPriMask << 27) |
((uint32_t)vid->VMBP << 21) |
((uint32_t)vid->VMABP << 18) |
((uint32_t)vid->VEM << 9) |
((uint32_t)vid->VMCBPR << 4) |
((uint32_t)vid->VMFiqEn << 3) |
((uint32_t)vid->VMAckCtl << 2) |
((uint32_t)vid->VMGrp1En << 1) |
((uint32_t)vid->VMGrp0En << 0)
);
break;
case GICH_MISR:
pkt->set<uint32_t>(getMISR(vid));
break;
case GICH_EISR0:
pkt->set<uint32_t>(vid->eisr & 0xffffffff);
break;
case GICH_EISR1:
pkt->set<uint32_t>(vid->eisr >> 32);
break;
case GICH_ELSR0: {
uint32_t bm = 0;
for (int i = 0; i < ((NUM_LR < 32) ? NUM_LR : 32); i++) {
if (!vid->LR[i].State)
bm |= 1 << i;
}
pkt->set<uint32_t>(bm);
} break;
case GICH_ELSR1: {
uint32_t bm = 0;
for (int i = 32; i < NUM_LR; i++) {
if (!vid->LR[i].State)
bm |= 1 << (i-32);
}
pkt->set<uint32_t>(bm);
} break;
case GICH_APR0:
warn_once("VGIC GICH_APR read!\n");
pkt->set<uint32_t>(0);
break;
case GICH_LR0:
case GICH_LR1:
case GICH_LR2:
case GICH_LR3:
pkt->set<uint32_t>(vid->LR[(daddr - GICH_LR0) >> 2]);
break;
default:
panic("VGIC HVCtrl read of bad address %#x\n", daddr);
}
pkt->makeAtomicResponse();
return pioDelay;
}
Tick
VGic::writeVCpu(PacketPtr pkt)
{
Addr daddr = pkt->getAddr() - vcpuAddr;
ContextID ctx_id = pkt->req->contextId();
assert(ctx_id < VGIC_CPU_MAX);
struct vcpuIntData *vid = &vcpuData[ctx_id];
DPRINTF(VGIC, "VGIC VCPU write register %#x <= %#x\n", daddr, pkt->get<uint32_t>());
switch (daddr) {
case GICV_CTLR:
vid->vctrl = pkt->get<uint32_t>();
break;
case GICV_PMR:
vid->VMPriMask = pkt->get<uint32_t>();
break;
case GICV_EOIR: {
// We don't handle the split EOI-then-DIR mode. Linux (guest)
// doesn't need it though.
assert(!vid->vctrl.EOImode);
uint32_t w = pkt->get<uint32_t>();
unsigned int virq = w & 0x3ff;
unsigned int vcpu = (w >> 10) & 7;
int i = findLRForVIRQ(vid, virq, vcpu);
if (i < 0) {
DPRINTF(VGIC, "EOIR: No LR for irq %d(cpu%d)\n", virq, vcpu);
} else {
DPRINTF(VGIC, "EOIR: Found LR%d for irq %d(cpu%d)\n", i, virq, vcpu);
ListReg *lr = &vid->LR[i];
lr->State = 0;
// Maintenance interrupt -- via eisr -- is flagged when
// LRs have EOI=1 and State=INVALID!
}
} break;
default:
panic("VGIC VCPU write %#x to unk address %#x\n", pkt->get<uint32_t>(), daddr);
}
// This updates the EISRs and flags IRQs:
updateIntState(ctx_id);
pkt->makeAtomicResponse();
return pioDelay;
}
Tick
VGic::writeCtrl(PacketPtr pkt)
{
Addr daddr = pkt->getAddr() - hvAddr;
ContextID ctx_id = pkt->req->contextId();
DPRINTF(VGIC, "VGIC HVCtrl write register %#x <= %#x\n", daddr, pkt->get<uint32_t>());
/* Munge the address: 0-0xfff is the usual space banked by requester CPU.
* Anything > that is 0x200-sized slices of 'per CPU' regs.
*/
if (daddr & ~0x1ff) {
ctx_id = (daddr >> 9);
if (ctx_id > 8)
panic("VGIC: Weird unbanked hv ctrl address %#x!\n", daddr);
daddr &= ~0x1ff;
}
assert(ctx_id < VGIC_CPU_MAX);
struct vcpuIntData *vid = &vcpuData[ctx_id];
switch (daddr) {
case GICH_HCR:
vid->hcr = pkt->get<uint32_t>();
// update int state
break;
case GICH_VMCR: {
uint32_t d = pkt->get<uint32_t>();
vid->VMPriMask = d >> 27;
vid->VMBP = (d >> 21) & 7;
vid->VMABP = (d >> 18) & 7;
vid->VEM = (d >> 9) & 1;
vid->VMCBPR = (d >> 4) & 1;
vid->VMFiqEn = (d >> 3) & 1;
vid->VMAckCtl = (d >> 2) & 1;
vid->VMGrp1En = (d >> 1) & 1;
vid->VMGrp0En = d & 1;
} break;
case GICH_APR0:
warn_once("VGIC GICH_APR0 written, ignored\n");
break;
case GICH_LR0:
case GICH_LR1:
case GICH_LR2:
case GICH_LR3:
vid->LR[(daddr - GICH_LR0) >> 2] = pkt->get<uint32_t>();
// update int state
break;
default:
panic("VGIC HVCtrl write to bad address %#x\n", daddr);
}
updateIntState(ctx_id);
pkt->makeAtomicResponse();
return pioDelay;
}
uint32_t
VGic::getMISR(struct vcpuIntData *vid)
{
return (!!vid->hcr.VGrp1DIE && !vid->VMGrp1En ? 0x80 : 0) |
(!!vid->hcr.VGrp1EIE && vid->VMGrp1En ? 0x40 : 0) |
(!!vid->hcr.VGrp0DIE && !vid->VMGrp0En ? 0x20 : 0) |
(!!vid->hcr.VGrp0EIE && vid->VMGrp0En ? 0x10 : 0) |
(!!vid->hcr.NPIE && !lrPending(vid) ? 0x08 : 0) |
(!!vid->hcr.LRENPIE && vid->hcr.EOICount ? 0x04 : 0) |
(!!vid->hcr.UIE && lrValid(vid) <= 1 ? 0x02 : 0) |
(vid->eisr ? 0x01 : 0);
}
void
VGic::postVInt(uint32_t cpu, Tick when)
{
DPRINTF(VGIC, "Posting VIRQ to %d\n", cpu);
if (!(postVIntEvent[cpu]->scheduled()))
eventq->schedule(postVIntEvent[cpu], when);
}
void
VGic::unPostVInt(uint32_t cpu)
{
DPRINTF(VGIC, "Unposting VIRQ to %d\n", cpu);
platform->intrctrl->clear(cpu, ArmISA::INT_VIRT_IRQ, 0);
}
void
VGic::processPostVIntEvent(uint32_t cpu)
{
platform->intrctrl->post(cpu, ArmISA::INT_VIRT_IRQ, 0);
}
void
VGic::postMaintInt(uint32_t cpu)
{
DPRINTF(VGIC, "Posting maintenance PPI to GIC/cpu%d\n", cpu);
// Linux DT configures this as Level.
gic->sendPPInt(maintInt, cpu);
}
void
VGic::unPostMaintInt(uint32_t cpu)
{
DPRINTF(VGIC, "Unposting maintenance PPI to GIC/cpu%d\n", cpu);
gic->clearPPInt(maintInt, cpu);
}
/* Update state (in general); something concerned with ctx_id has changed.
* This may raise a maintenance interrupt.
*/
void
VGic::updateIntState(ContextID ctx_id)
{
// @todo This should update APRs!
// Build EISR contents:
// (Cached so that regs can read them without messing about again)
struct vcpuIntData *tvid = &vcpuData[ctx_id];
tvid->eisr = 0;
for (int i = 0; i < NUM_LR; i++) {
if (!tvid->LR[i].State && tvid->LR[i].EOI) {
tvid->eisr |= 1 << i;
}
}
assert(sys->numRunningContexts() <= VGIC_CPU_MAX);
for (int i = 0; i < sys->numRunningContexts(); i++) {
struct vcpuIntData *vid = &vcpuData[i];
// Are any LRs active that weren't before?
if (!vIntPosted[i]) {
if (lrPending(vid) && vid->vctrl.En) {
vIntPosted[i] = true;
postVInt(i, curTick() + 1);
}
} else if (!lrPending(vid)) {
vIntPosted[i] = false;
unPostVInt(i);
}
// Any maintenance ints to send?
if (!maintIntPosted[i]) {
if (vid->hcr.En && getMISR(vid)) {
maintIntPosted[i] = true;
postMaintInt(i);
}
} else {
if (!vid->hcr.En || !getMISR(vid)) {
unPostMaintInt(i);
maintIntPosted[i] = false;
}
}
}
}
AddrRangeList
VGic::getAddrRanges() const
{
AddrRangeList ranges;
ranges.push_back(RangeSize(hvAddr, GICH_REG_SIZE));
ranges.push_back(RangeSize(vcpuAddr, GICV_SIZE));
return ranges;
}
void
VGic::serialize(CheckpointOut &cp) const
{
Tick interrupt_time[VGIC_CPU_MAX];
for (uint32_t cpu = 0; cpu < VGIC_CPU_MAX; cpu++) {
interrupt_time[cpu] = 0;
if (postVIntEvent[cpu]->scheduled()) {
interrupt_time[cpu] = postVIntEvent[cpu]->when();
}
}
DPRINTF(Checkpoint, "Serializing VGIC\n");
SERIALIZE_ARRAY(interrupt_time, VGIC_CPU_MAX);
SERIALIZE_ARRAY(maintIntPosted, VGIC_CPU_MAX);
SERIALIZE_ARRAY(vIntPosted, VGIC_CPU_MAX);
SERIALIZE_SCALAR(vcpuAddr);
SERIALIZE_SCALAR(hvAddr);
SERIALIZE_SCALAR(pioDelay);
SERIALIZE_SCALAR(maintInt);
for (uint32_t cpu = 0; cpu < VGIC_CPU_MAX; cpu++)
vcpuData[cpu].serializeSection(cp, csprintf("vcpuData%d", cpu));
}
void
VGic::vcpuIntData::serialize(CheckpointOut &cp) const
{
uint32_t vctrl_val = vctrl;
SERIALIZE_SCALAR(vctrl_val);
uint32_t hcr_val = hcr;
SERIALIZE_SCALAR(hcr_val);
uint64_t eisr_val = eisr;
SERIALIZE_SCALAR(eisr_val);
uint8_t VMGrp0En_val = VMGrp0En;
SERIALIZE_SCALAR(VMGrp0En_val);
uint8_t VMGrp1En_val = VMGrp1En;
SERIALIZE_SCALAR(VMGrp1En_val);
uint8_t VMAckCtl_val = VMAckCtl;
SERIALIZE_SCALAR(VMAckCtl_val);
uint8_t VMFiqEn_val = VMFiqEn;
SERIALIZE_SCALAR(VMFiqEn_val);
uint8_t VMCBPR_val = VMCBPR;
SERIALIZE_SCALAR(VMCBPR_val);
uint8_t VEM_val = VEM;
SERIALIZE_SCALAR(VEM_val);
uint8_t VMABP_val = VMABP;
SERIALIZE_SCALAR(VMABP_val);
uint8_t VMBP_val = VMBP;
SERIALIZE_SCALAR(VMBP_val);
uint8_t VMPriMask_val = VMPriMask;
SERIALIZE_SCALAR(VMPriMask_val);
for (int i = 0; i < NUM_LR; i++) {
ScopedCheckpointSection sec_lr(cp, csprintf("LR%d", i));
paramOut(cp, "lr", LR[i]);
}
}
void VGic::unserialize(CheckpointIn &cp)
{
DPRINTF(Checkpoint, "Unserializing Arm GIC\n");
Tick interrupt_time[VGIC_CPU_MAX];
UNSERIALIZE_ARRAY(interrupt_time, VGIC_CPU_MAX);
for (uint32_t cpu = 0; cpu < VGIC_CPU_MAX; cpu++) {
if (interrupt_time[cpu])
schedule(postVIntEvent[cpu], interrupt_time[cpu]);
vcpuData[cpu].unserializeSection(cp, csprintf("vcpuData%d", cpu));
}
UNSERIALIZE_ARRAY(maintIntPosted, VGIC_CPU_MAX);
UNSERIALIZE_ARRAY(vIntPosted, VGIC_CPU_MAX);
UNSERIALIZE_SCALAR(vcpuAddr);
UNSERIALIZE_SCALAR(hvAddr);
UNSERIALIZE_SCALAR(pioDelay);
UNSERIALIZE_SCALAR(maintInt);
}
void
VGic::vcpuIntData::unserialize(CheckpointIn &cp)
{
paramIn(cp, "vctrl_val", vctrl);
paramIn(cp, "hcr_val", hcr);
paramIn(cp, "eisr_val", eisr);
paramIn(cp, "VMGrp0En_val", VMGrp0En);
paramIn(cp, "VMGrp1En_val", VMGrp1En);
paramIn(cp, "VMAckCtl_val", VMAckCtl);
paramIn(cp, "VMFiqEn_val", VMFiqEn);
paramIn(cp, "VMCBPR_val", VMCBPR);
paramIn(cp, "VEM_val", VEM);
paramIn(cp, "VMABP_val", VMABP);
paramIn(cp, "VMPriMask_val", VMPriMask);
for (int i = 0; i < NUM_LR; i++) {
ScopedCheckpointSection sec_lr(cp, csprintf("LR%d", i));
paramIn(cp, "lr", LR[i]);
}
}
VGic *
VGicParams::create()
{
return new VGic(this);
}