| // Copyright (c) 2007-2008 The Hewlett-Packard Development Company |
| // Copyright (c) 2015 Advanced Micro Devices, Inc. |
| // All rights reserved. |
| // |
| // The license below extends only to copyright in the software and shall |
| // not be construed as granting a license to any other intellectual |
| // property including but not limited to intellectual property relating |
| // to a hardware implementation of the functionality of the software |
| // licensed hereunder. You may use the software subject to the license |
| // terms below provided that you ensure that this notice is replicated |
| // unmodified and in its entirety in all distributions of the software, |
| // modified or unmodified, in source code or in binary form. |
| // |
| // Copyright (c) 2007 The Regents of The University of Michigan |
| // Copyright (c) 2012 Mark D. Hill and David A. Wood |
| // Copyright (c) 2012-2013 Advanced Micro Devices, Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer; |
| // redistributions in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution; |
| // neither the name of the copyright holders nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| def operand_types {{ |
| 'sb' : 'int8_t', |
| 'ub' : 'uint8_t', |
| 'sw' : 'int16_t', |
| 'uw' : 'uint16_t', |
| 'sdw' : 'int32_t', |
| 'udw' : 'uint32_t', |
| 'sqw' : 'int64_t', |
| 'uqw' : 'uint64_t', |
| 'u2qw' : 'std::array<uint64_t, 2>', |
| 'sf' : 'float', |
| 'df' : 'double', |
| }}; |
| |
| let {{ |
| def foldInt(idx, foldBit, id): |
| return ('IntReg', 'uqw', 'INTREG_FOLDED(%s, %s)' % (idx, foldBit), |
| 'IsInteger', id) |
| def intReg(idx, id): |
| return ('IntReg', 'uqw', idx, 'IsInteger', id) |
| def impIntReg(idx, id): |
| return ('IntReg', 'uqw', 'INTREG_IMPLICIT(%s)' % idx, 'IsInteger', id) |
| def floatReg(idx, id): |
| return ('FloatReg', 'df', idx, 'IsFloating', id) |
| def ccReg(idx, id): |
| return ('CCReg', 'uqw', idx, 'IsCC', id) |
| def controlReg(idx, id, ctype = 'uqw'): |
| return ('ControlReg', ctype, idx, |
| (None, None, ['IsSerializeAfter', |
| 'IsSerializing', |
| 'IsNonSpeculative']), |
| id) |
| def squashCheckReg(idx, id, check, ctype = 'uqw'): |
| return ('ControlReg', ctype, idx, |
| (None, None, ['((%s) ? ' % check+ \ |
| 'IsSquashAfter : IsSerializeAfter)', |
| 'IsSerializing', |
| 'IsNonSpeculative']), |
| id) |
| def squashCReg(idx, id, ctype = 'uqw'): |
| return squashCheckReg(idx, id, 'true', ctype) |
| def squashCSReg(idx, id, ctype = 'uqw'): |
| return squashCheckReg(idx, id, 'dest == SEGMENT_REG_CS', ctype) |
| def squashCR0Reg(idx, id, ctype = 'uqw'): |
| return squashCheckReg(idx, id, 'dest == 0', ctype) |
| }}; |
| |
| def operands {{ |
| 'SrcReg1': foldInt('src1', 'foldOBit', 1), |
| 'SSrcReg1': intReg('src1', 1), |
| 'SrcReg2': foldInt('src2', 'foldOBit', 2), |
| 'SSrcReg2': intReg('src2', 1), |
| 'Index': foldInt('index', 'foldABit', 3), |
| 'Base': foldInt('base', 'foldABit', 4), |
| 'DestReg': foldInt('dest', 'foldOBit', 5), |
| 'SDestReg': intReg('dest', 5), |
| 'Data': foldInt('data', 'foldOBit', 6), |
| 'DataLow': foldInt('dataLow', 'foldOBit', 6), |
| 'DataHi': foldInt('dataHi', 'foldOBit', 6), |
| 'ProdLow': impIntReg(0, 7), |
| 'ProdHi': impIntReg(1, 8), |
| 'Quotient': impIntReg(2, 9), |
| 'Remainder': impIntReg(3, 10), |
| 'Divisor': impIntReg(4, 11), |
| 'DoubleBits': impIntReg(5, 11), |
| 'Rax': intReg('(INTREG_RAX)', 12), |
| 'Rbx': intReg('(INTREG_RBX)', 13), |
| 'Rcx': intReg('(INTREG_RCX)', 14), |
| 'Rdx': intReg('(INTREG_RDX)', 15), |
| 'Rsp': intReg('(INTREG_RSP)', 16), |
| 'Rbp': intReg('(INTREG_RBP)', 17), |
| 'Rsi': intReg('(INTREG_RSI)', 18), |
| 'Rdi': intReg('(INTREG_RDI)', 19), |
| 'R8': intReg('(INTREG_R8)', 20), |
| 'R9': intReg('(INTREG_R9)', 21), |
| 'FpSrcReg1': floatReg('src1', 22), |
| 'FpSrcReg2': floatReg('src2', 23), |
| 'FpDestReg': floatReg('dest', 24), |
| 'FpData': floatReg('data', 25), |
| 'RIP': ('PCState', 'uqw', 'pc', |
| (None, None, 'IsControl'), 50), |
| 'NRIP': ('PCState', 'uqw', 'npc', |
| (None, None, 'IsControl'), 50), |
| 'nuIP': ('PCState', 'uqw', 'nupc', |
| (None, None, 'IsControl'), 50), |
| # These registers hold the condition code portion of the flag |
| # register. The nccFlagBits version holds the rest. |
| 'ccFlagBits': ccReg('(CCREG_ZAPS)', 60), |
| 'cfofBits': ccReg('(CCREG_CFOF)', 61), |
| 'dfBit': ccReg('(CCREG_DF)', 62), |
| 'ecfBit': ccReg('(CCREG_ECF)', 63), |
| 'ezfBit': ccReg('(CCREG_EZF)', 64), |
| |
| # These Pred registers are to be used where reading the portions of |
| # condition code registers is possibly optional, depending on how the |
| # check evaluates. There are two checks being specified, one tests if |
| # a register needs to be read, the other tests whether the register |
| # needs to be written to. It is unlikely that these would need to be |
| # used in the actual operation of the instruction. It is expected |
| # that these are used only in the flag code. |
| |
| # Rationale behind the checks: at times, we need to partially update |
| # the condition code bits in a register. So we read the register even |
| # in the case when the all the bits will be written, or none of the |
| # bits will be written. The read predicate checks if any of the bits |
| # would be retained, the write predicate checks if any of the bits |
| # are being written. |
| |
| 'PredccFlagBits': ('CCReg', 'uqw', '(CCREG_ZAPS)', 'IsCC', |
| 60, None, None, '''(((ext & (PFBit | AFBit | ZFBit | SFBit |
| )) != (PFBit | AFBit | ZFBit | SFBit )) && |
| ((ext & (PFBit | AFBit | ZFBit | SFBit )) != 0))''', |
| '((ext & (PFBit | AFBit | ZFBit | SFBit )) != 0)'), |
| 'PredcfofBits': ('CCReg', 'uqw', '(CCREG_CFOF)', 'IsCC', |
| 61, None, None, '''(((ext & CFBit) == 0 || |
| (ext & OFBit) == 0) && ((ext & (CFBit | OFBit)) != 0))''', |
| '((ext & (CFBit | OFBit)) != 0)'), |
| 'PreddfBit': ('CCReg', 'uqw', '(CCREG_DF)', 'IsCC', |
| 62, None, None, '(false)', '((ext & DFBit) != 0)'), |
| 'PredecfBit': ('CCReg', 'uqw', '(CCREG_ECF)', 'IsCC', |
| 63, None, None, '(false)', '((ext & ECFBit) != 0)'), |
| 'PredezfBit': ('CCReg', 'uqw', '(CCREG_EZF)', 'IsCC', |
| 64, None, None, '(false)', '((ext & EZFBit) != 0)'), |
| |
| # These register should needs to be more protected so that later |
| # instructions don't map their indexes with an old value. |
| 'nccFlagBits': controlReg('MISCREG_RFLAGS', 65), |
| |
| # Registers related to the state of x87 floating point unit. |
| 'TOP': controlReg('MISCREG_X87_TOP', 66, ctype='ub'), |
| 'FSW': controlReg('MISCREG_FSW', 67, ctype='uw'), |
| 'FTW': controlReg('MISCREG_FTW', 68, ctype='uw'), |
| 'FCW': controlReg('MISCREG_FCW', 69, ctype='uw'), |
| |
| # The segment base as used by memory instructions. |
| 'SegBase': controlReg('MISCREG_SEG_EFF_BASE(segment)', 70), |
| |
| # Operands to get and set registers indexed by the operands of the |
| # original instruction. |
| 'ControlDest': squashCR0Reg('MISCREG_CR(dest)', 100), |
| 'ControlSrc1': controlReg('MISCREG_CR(src1)', 101), |
| 'DebugDest': controlReg('MISCREG_DR(dest)', 102), |
| 'DebugSrc1': controlReg('MISCREG_DR(src1)', 103), |
| 'SegBaseDest': squashCSReg('MISCREG_SEG_BASE(dest)', 104), |
| 'SegBaseSrc1': controlReg('MISCREG_SEG_BASE(src1)', 105), |
| 'SegLimitDest': squashCSReg('MISCREG_SEG_LIMIT(dest)', 106), |
| 'SegLimitSrc1': controlReg('MISCREG_SEG_LIMIT(src1)', 107), |
| 'SegSelDest': controlReg('MISCREG_SEG_SEL(dest)', 108), |
| 'SegSelSrc1': controlReg('MISCREG_SEG_SEL(src1)', 109), |
| 'SegAttrDest': squashCSReg('MISCREG_SEG_ATTR(dest)', 110), |
| 'SegAttrSrc1': controlReg('MISCREG_SEG_ATTR(src1)', 111), |
| |
| # Operands to access specific control registers directly. |
| 'EferOp': squashCReg('MISCREG_EFER', 200), |
| 'CR4Op': controlReg('MISCREG_CR4', 201), |
| 'DR7Op': controlReg('MISCREG_DR7', 202), |
| 'LDTRBase': controlReg('MISCREG_TSL_BASE', 203), |
| 'LDTRLimit': controlReg('MISCREG_TSL_LIMIT', 204), |
| 'LDTRSel': controlReg('MISCREG_TSL', 205), |
| 'GDTRBase': controlReg('MISCREG_TSG_BASE', 206), |
| 'GDTRLimit': controlReg('MISCREG_TSG_LIMIT', 207), |
| 'CSBase': squashCReg('MISCREG_CS_EFF_BASE', 208), |
| 'CSAttr': squashCReg('MISCREG_CS_ATTR', 209), |
| 'MiscRegDest': controlReg('dest', 210), |
| 'MiscRegSrc1': controlReg('src1', 211), |
| 'TscOp': controlReg('MISCREG_TSC', 212), |
| 'M5Reg': squashCReg('MISCREG_M5_REG', 213), |
| 'Mem': ('Mem', 'uqw', None, \ |
| ('IsMemRef', 'IsLoad', 'IsStore'), 300) |
| }}; |