blob: c4c0acc9e3bd8795041f42edb9b8c807cc15b072 [file] [log] [blame]
# Copyright (c) 2012-2013 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2015 The University of Bologna
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# A Simplified model of a complete HMC device. Based on:
# [1] http://www.hybridmemorycube.org/specification-download/
# [2] High performance AXI-4.0 based interconnect for extensible smart memory
# cubes(E. Azarkhish et. al)
# [3] Low-Power Hybrid Memory Cubes With Link Power Management and Two-Level
# Prefetching (J. Ahn et. al)
# [4] Memory-centric system interconnect design with Hybrid Memory Cubes
# (G. Kim et. al)
# [5] Near Data Processing, Are we there yet? (M. Gokhale)
# http://www.cs.utah.edu/wondp/gokhale.pdf
# [6] openHMC - A Configurable Open-Source Hybrid Memory Cube Controller
# (J. Schmidt)
# [7] Hybrid Memory Cube performance characterization on data-centric
# workloads (M. Gokhale)
#
# This script builds a complete HMC device composed of vault controllers,
# serial links, the main internal crossbar, and an external hmc controller.
#
# - VAULT CONTROLLERS:
# Instances of the HMC_2500_1x32 class with their functionality specified in
# dram_ctrl.cc
#
# - THE MAIN XBAR:
# This component is simply an instance of the NoncoherentXBar class, and its
# parameters are tuned to [2].
#
# - SERIAL LINKS CONTROLLER:
# SerialLink is a simple variation of the Bridge class, with the ability to
# account for the latency of packet serialization and controller latency. We
# assume that the serializer component at the transmitter side does not need
# to receive the whole packet to start the serialization. But the
# deserializer waits for the complete packet to check its integrity first.
#
# * Bandwidth of the serial links is not modeled in the SerialLink component
# itself.
#
# * Latency of serial link controller is composed of SerDes latency + link
# controller
#
# * It is inferred from the standard [1] and the literature [3] that serial
# links share the same address range and packets can travel over any of
# them so a load distribution mechanism is required among them.
#
# -----------------------------------------
# | Host/HMC Controller |
# | ---------------------- |
# | | Link Aggregator | opt |
# | ---------------------- |
# | ---------------------- |
# | | Serial Link + Ser | * 4 |
# | ---------------------- |
# |---------------------------------------
# -----------------------------------------
# | Device
# | ---------------------- |
# | | Xbar | * 4 |
# | ---------------------- |
# | ---------------------- |
# | | Vault Controller | * 16 |
# | ---------------------- |
# | ---------------------- |
# | | Memory | |
# | ---------------------- |
# |---------------------------------------|
#
# In this version we have present 3 different HMC archiecture along with
# alongwith their corresponding test script.
#
# same: It has 4 crossbars in HMC memory. All the crossbars are connected
# to each other, providing complete memory range. This archicture also covers
# the added latency for sending a request to non-local vault(bridge in b/t
# crossbars). All the 4 serial links can access complete memory. So each
# link can be connected to separate processor.
#
# distributed: It has 4 crossbars inside the HMC. Crossbars are not
# connected.Through each crossbar only local vaults can be accessed. But to
# support this architecture we need a crossbar between serial links and
# processor.
#
# mixed: This is a hybrid architecture. It has 4 crossbars inside the HMC.
# 2 Crossbars are connected to only local vaults. From other 2 crossbar, a
# request can be forwarded to any other vault.
from __future__ import print_function
from __future__ import absolute_import
import argparse
import m5
from m5.objects import *
from m5.util import *
def add_options(parser):
# *****************************CROSSBAR PARAMETERS*************************
# Flit size of the main interconnect [1]
parser.add_argument("--xbar-width", default=32, action="store", type=int,
help="Data width of the main XBar (Bytes)")
# Clock frequency of the main interconnect [1]
# This crossbar, is placed on the logic-based of the HMC and it has its
# own voltage and clock domains, different from the DRAM dies or from the
# host.
parser.add_argument("--xbar-frequency", default='1GHz', type=str,
help="Clock Frequency of the main XBar")
# Arbitration latency of the HMC XBar [1]
parser.add_argument("--xbar-frontend-latency", default=1, action="store",
type=int, help="Arbitration latency of the XBar")
# Latency to forward a packet via the interconnect [1](two levels of FIFOs
# at the input and output of the inteconnect)
parser.add_argument("--xbar-forward-latency", default=2, action="store",
type=int, help="Forward latency of the XBar")
# Latency to forward a response via the interconnect [1](two levels of
# FIFOs at the input and output of the inteconnect)
parser.add_argument("--xbar-response-latency", default=2, action="store",
type=int, help="Response latency of the XBar")
# number of cross which connects 16 Vaults to serial link[7]
parser.add_argument("--number-mem-crossbar", default=4, action="store",
type=int, help="Number of crossbar in HMC")
# *****************************SERIAL LINK PARAMETERS**********************
# Number of serial links controllers [1]
parser.add_argument("--num-links-controllers", default=4, action="store",
type=int, help="Number of serial links")
# Number of packets (not flits) to store at the request side of the serial
# link. This number should be adjusted to achive required bandwidth
parser.add_argument("--link-buffer-size-req", default=10, action="store",
type=int, help="Number of packets to buffer at the\
request side of the serial link")
# Number of packets (not flits) to store at the response side of the serial
# link. This number should be adjusted to achive required bandwidth
parser.add_argument("--link-buffer-size-rsp", default=10, action="store",
type=int, help="Number of packets to buffer at the\
response side of the serial link")
# Latency of the serial link composed by SER/DES latency (1.6ns [4]) plus
# the PCB trace latency (3ns Estimated based on [5])
parser.add_argument("--link-latency", default='4.6ns', type=str,
help="Latency of the serial links")
# Clock frequency of the each serial link(SerDes) [1]
parser.add_argument("--link-frequency", default='10GHz', type=str,
help="Clock Frequency of the serial links")
# Clock frequency of serial link Controller[6]
# clk_hmc[Mhz]= num_lanes_per_link * lane_speed [Gbits/s] /
# data_path_width * 10^6
# clk_hmc[Mhz]= 16 * 10 Gbps / 256 * 10^6 = 625 Mhz
parser.add_argument("--link-controller-frequency", default='625MHz',
type=str, help="Clock Frequency of the link\
controller")
# Latency of the serial link controller to process the packets[1][6]
# (ClockDomain = 625 Mhz )
# used here for calculations only
parser.add_argument("--link-ctrl-latency", default=4, action="store",
type=int, help="The number of cycles required for the\
controller to process the packet")
# total_ctrl_latency = link_ctrl_latency + link_latency
# total_ctrl_latency = 4(Cycles) * 1.6 ns + 4.6 ns
parser.add_argument("--total-ctrl-latency", default='11ns', type=str,
help="The latency experienced by every packet\
regardless of size of packet")
# Number of parallel lanes in each serial link [1]
parser.add_argument("--num-lanes-per-link", default=16, action="store",
type=int, help="Number of lanes per each link")
# Number of serial links [1]
parser.add_argument("--num-serial-links", default=4, action="store",
type=int, help="Number of serial links")
# speed of each lane of serial link - SerDes serial interface 10 Gb/s
parser.add_argument("--serial-link-speed", default=10, action="store",
type=int, help="Gbs/s speed of each lane of serial\
link")
# address range for each of the serial links
parser.add_argument("--serial-link-addr-range", default='1GB', type=str,
help="memory range for each of the serial links.\
Default: 1GB")
# *****************************PERFORMANCE MONITORING*********************
# The main monitor behind the HMC Controller
parser.add_argument("--enable-global-monitor", action="store_true",
help="The main monitor behind the HMC Controller")
# The link performance monitors
parser.add_argument("--enable-link-monitor", action="store_true",
help="The link monitors")
# link aggregator enable - put a cross between buffers & links
parser.add_argument("--enable-link-aggr", action="store_true", help="The\
crossbar between port and Link Controller")
parser.add_argument("--enable-buff-div", action="store_true",
help="Memory Range of Buffer is ivided between total\
range")
# *****************************HMC ARCHITECTURE **************************
# Memory chunk for 16 vault - numbers of vault / number of crossbars
parser.add_argument("--mem-chunk", default=4, action="store", type=int,
help="Chunk of memory range for each cross bar in\
arch 0")
# size of req buffer within crossbar, used for modelling extra latency
# when the reuqest go to non-local vault
parser.add_argument("--xbar-buffer-size-req", default=10, action="store",
type=int, help="Number of packets to buffer at the\
request side of the crossbar")
# size of response buffer within crossbar, used for modelling extra latency
# when the response received from non-local vault
parser.add_argument("--xbar-buffer-size-resp", default=10, action="store",
type=int, help="Number of packets to buffer at the\
response side of the crossbar")
# HMC device architecture. It affects the HMC host controller as well
parser.add_argument("--arch", type=str, choices=["same", "distributed",
"mixed"], default="distributed", help="same: HMC with\
4 links, all with same range.\ndistributed: HMC with\
4 links with distributed range.\nmixed: mixed with\
same and distributed range.\nDefault: distributed")
# HMC device - number of vaults
parser.add_argument("--hmc-dev-num-vaults", default=16, action="store",
type=int, help="number of independent vaults within\
the HMC device. Note: each vault has a memory\
controller (valut controller)\nDefault: 16")
# HMC device - vault capacity or size
parser.add_argument("--hmc-dev-vault-size", default='256MB', type=str,
help="vault storage capacity in bytes. Default:\
256MB")
parser.add_argument("--mem-type", type=str, choices=["HMC_2500_1x32"],
default="HMC_2500_1x32", help="type of HMC memory to\
use. Default: HMC_2500_1x32")
parser.add_argument("--mem-channels", default=1, action="store", type=int,
help="Number of memory channels")
parser.add_argument("--mem-ranks", default=1, action="store", type=int,
help="Number of ranks to iterate across")
parser.add_argument("--burst-length", default=256, action="store",
type=int, help="burst length in bytes. Note: the\
cache line size will be set to this value.\nDefault:\
256")
# configure HMC host controller
def config_hmc_host_ctrl(opt, system):
# create HMC host controller
system.hmc_host = SubSystem()
# Create additional crossbar for arch1
if opt.arch == "distributed" or opt.arch == "mixed":
clk = '100GHz'
vd = VoltageDomain(voltage='1V')
# Create additional crossbar for arch1
system.membus = NoncoherentXBar(width=8)
system.membus.badaddr_responder = BadAddr()
system.membus.default = Self.badaddr_responder.pio
system.membus.width = 8
system.membus.frontend_latency = 3
system.membus.forward_latency = 4
system.membus.response_latency = 2
cd = SrcClockDomain(clock=clk, voltage_domain=vd)
system.membus.clk_domain = cd
# create memory ranges for the serial links
slar = convert.toMemorySize(opt.serial_link_addr_range)
# Memmory ranges of serial link for arch-0. Same as the ranges of vault
# controllers (4 vaults to 1 serial link)
if opt.arch == "same":
ser_ranges = [AddrRange(0, (4*slar)-1) for i in
range(opt.num_serial_links)]
# Memmory ranges of serial link for arch-1. Distributed range accross
# links
if opt.arch == "distributed":
ser_ranges = [AddrRange(i*slar, ((i+1)*slar)-1) for i in
range(opt.num_serial_links)]
# Memmory ranges of serial link for arch-2 'Mixed' address distribution
# over links
if opt.arch == "mixed":
ser_range0 = AddrRange(0, (1*slar)-1)
ser_range1 = AddrRange(1*slar, 2*slar-1)
ser_range2 = AddrRange(0, (4*slar)-1)
ser_range3 = AddrRange(0, (4*slar)-1)
ser_ranges = [ser_range0, ser_range1, ser_range2, ser_range3]
# Serial link Controller with 16 SerDes links at 10 Gbps with serial link
# ranges w.r.t to architecture
sl = [SerialLink(ranges=ser_ranges[i],
req_size=opt.link_buffer_size_req,
resp_size=opt.link_buffer_size_rsp,
num_lanes=opt.num_lanes_per_link,
link_speed=opt.serial_link_speed,
delay=opt.total_ctrl_latency) for i in
range(opt.num_serial_links)]
system.hmc_host.seriallink = sl
# enable global monitor
if opt.enable_global_monitor:
system.hmc_host.lmonitor = [CommMonitor() for i in
range(opt.num_serial_links)]
# set the clock frequency for serial link
for i in range(opt.num_serial_links):
clk = opt.link_controller_frequency
vd = VoltageDomain(voltage='1V')
scd = SrcClockDomain(clock=clk, voltage_domain=vd)
system.hmc_host.seriallink[i].clk_domain = scd
# Connect membus/traffic gen to Serial Link Controller for differrent HMC
# architectures
hh = system.hmc_host
if opt.arch == "distributed":
mb = system.membus
for i in range(opt.num_links_controllers):
if opt.enable_global_monitor:
mb.master = hh.lmonitor[i].slave
hh.lmonitor[i].master = hh.seriallink[i].slave
else:
mb.master = hh.seriallink[i].slave
if opt.arch == "mixed":
mb = system.membus
if opt.enable_global_monitor:
mb.master = hh.lmonitor[0].slave
hh.lmonitor[0].master = hh.seriallink[0].slave
mb.master = hh.lmonitor[1].slave
hh.lmonitor[1].master = hh.seriallink[1].slave
else:
mb.master = hh.seriallink[0].slave
mb.master = hh.seriallink[1].slave
if opt.arch == "same":
for i in range(opt.num_links_controllers):
if opt.enable_global_monitor:
hh.lmonitor[i].master = hh.seriallink[i].slave
return system
# Create an HMC device
def config_hmc_dev(opt, system, hmc_host):
# create HMC device
system.hmc_dev = SubSystem()
# create memory ranges for the vault controllers
arv = convert.toMemorySize(opt.hmc_dev_vault_size)
addr_ranges_vaults = [AddrRange(i*arv, ((i+1)*arv-1)) for i in
range(opt.hmc_dev_num_vaults)]
system.mem_ranges = addr_ranges_vaults
if opt.enable_link_monitor:
lm = [CommMonitor() for i in range(opt.num_links_controllers)]
system.hmc_dev.lmonitor = lm
# 4 HMC Crossbars located in its logic-base (LoB)
xb = [NoncoherentXBar(width=opt.xbar_width,
frontend_latency=opt.xbar_frontend_latency,
forward_latency=opt.xbar_forward_latency,
response_latency=opt.xbar_response_latency) for i in
range(opt.number_mem_crossbar)]
system.hmc_dev.xbar = xb
for i in range(opt.number_mem_crossbar):
clk = opt.xbar_frequency
vd = VoltageDomain(voltage='1V')
scd = SrcClockDomain(clock=clk, voltage_domain=vd)
system.hmc_dev.xbar[i].clk_domain = scd
# Attach 4 serial link to 4 crossbar/s
for i in range(opt.num_serial_links):
if opt.enable_link_monitor:
system.hmc_host.seriallink[i].master = \
system.hmc_dev.lmonitor[i].slave
system.hmc_dev.lmonitor[i].master = system.hmc_dev.xbar[i].slave
else:
system.hmc_host.seriallink[i].master = system.hmc_dev.xbar[i].slave
# Connecting xbar with each other for request arriving at the wrong xbar,
# then it will be forward to correct xbar. Bridge is used to connect xbars
if opt.arch == "same":
numx = len(system.hmc_dev.xbar)
# create a list of buffers
system.hmc_dev.buffers = [Bridge(req_size=opt.xbar_buffer_size_req,
resp_size=opt.xbar_buffer_size_resp)
for i in range(numx*(opt.mem_chunk-1))]
# Buffer iterator
it = iter(list(range(len(system.hmc_dev.buffers))))
# necesarry to add system_port to one of the xbar
system.system_port = system.hmc_dev.xbar[3].slave
# iterate over all the crossbars and connect them as required
for i in range(numx):
for j in range(numx):
# connect xbar to all other xbars except itself
if i != j:
# get the next index of buffer
index = next(it)
# Change the default values for ranges of bridge
system.hmc_dev.buffers[index].ranges = system.mem_ranges[
j * int(opt.mem_chunk):
(j + 1) * int(opt.mem_chunk)]
# Connect the bridge between corssbars
system.hmc_dev.xbar[i].master = system.hmc_dev.buffers[
index].slave
system.hmc_dev.buffers[
index].master = system.hmc_dev.xbar[j].slave
else:
# Don't connect the xbar to itself
pass
# Two crossbars are connected to all other crossbars-Other 2 vault
# can only direct traffic to it local vaults
if opt.arch == "mixed":
system.hmc_dev.buffer30 = Bridge(ranges=system.mem_ranges[0:4])
system.hmc_dev.xbar[3].master = system.hmc_dev.buffer30.slave
system.hmc_dev.buffer30.master = system.hmc_dev.xbar[0].slave
system.hmc_dev.buffer31 = Bridge(ranges=system.mem_ranges[4:8])
system.hmc_dev.xbar[3].master = system.hmc_dev.buffer31.slave
system.hmc_dev.buffer31.master = system.hmc_dev.xbar[1].slave
system.hmc_dev.buffer32 = Bridge(ranges=system.mem_ranges[8:12])
system.hmc_dev.xbar[3].master = system.hmc_dev.buffer32.slave
system.hmc_dev.buffer32.master = system.hmc_dev.xbar[2].slave
system.hmc_dev.buffer20 = Bridge(ranges=system.mem_ranges[0:4])
system.hmc_dev.xbar[2].master = system.hmc_dev.buffer20.slave
system.hmc_dev.buffer20.master = system.hmc_dev.xbar[0].slave
system.hmc_dev.buffer21 = Bridge(ranges=system.mem_ranges[4:8])
system.hmc_dev.xbar[2].master = system.hmc_dev.buffer21.slave
system.hmc_dev.buffer21.master = system.hmc_dev.xbar[1].slave
system.hmc_dev.buffer23 = Bridge(ranges=system.mem_ranges[12:16])
system.hmc_dev.xbar[2].master = system.hmc_dev.buffer23.slave
system.hmc_dev.buffer23.master = system.hmc_dev.xbar[3].slave