| |
| /*============================================================================ |
| |
| This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic |
| Package, Release 3d, by John R. Hauser. |
| |
| Copyright 2011, 2012, 2013, 2014 The Regents of the University of California. |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are met: |
| |
| 1. Redistributions of source code must retain the above copyright notice, |
| this list of conditions, and the following disclaimer. |
| |
| 2. Redistributions in binary form must reproduce the above copyright notice, |
| this list of conditions, and the following disclaimer in the documentation |
| and/or other materials provided with the distribution. |
| |
| 3. Neither the name of the University nor the names of its contributors may |
| be used to endorse or promote products derived from this software without |
| specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY |
| EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE |
| DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY |
| DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| =============================================================================*/ |
| |
| #include <stdbool.h> |
| #include <stdint.h> |
| #include "platform.h" |
| #include "internals.h" |
| #include "softfloat.h" |
| |
| float128_t f128_sub( float128_t a, float128_t b ) |
| { |
| union ui128_f128 uA; |
| uint_fast64_t uiA64, uiA0; |
| bool signA; |
| union ui128_f128 uB; |
| uint_fast64_t uiB64, uiB0; |
| bool signB; |
| #if ! defined INLINE_LEVEL || (INLINE_LEVEL < 2) |
| float128_t |
| (*magsFuncPtr)( |
| uint_fast64_t, uint_fast64_t, uint_fast64_t, uint_fast64_t, bool ); |
| #endif |
| |
| uA.f = a; |
| uiA64 = uA.ui.v64; |
| uiA0 = uA.ui.v0; |
| signA = signF128UI64( uiA64 ); |
| uB.f = b; |
| uiB64 = uB.ui.v64; |
| uiB0 = uB.ui.v0; |
| signB = signF128UI64( uiB64 ); |
| #if defined INLINE_LEVEL && (2 <= INLINE_LEVEL) |
| if ( signA == signB ) { |
| return softfloat_subMagsF128( uiA64, uiA0, uiB64, uiB0, signA ); |
| } else { |
| return softfloat_addMagsF128( uiA64, uiA0, uiB64, uiB0, signA ); |
| } |
| #else |
| magsFuncPtr = |
| (signA == signB) ? softfloat_subMagsF128 : softfloat_addMagsF128; |
| return (*magsFuncPtr)( uiA64, uiA0, uiB64, uiB0, signA ); |
| #endif |
| |
| } |
| |