| /* |
| * Copyright (c) 2010-2013, 2015, 2021 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2001-2005 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "mem/cfi_mem.hh" |
| |
| #include <cmath> |
| |
| #include "base/intmath.hh" |
| #include "base/random.hh" |
| #include "base/trace.hh" |
| #include "debug/CFI.hh" |
| #include "debug/Drain.hh" |
| |
| namespace gem5 |
| { |
| |
| namespace memory |
| { |
| |
| bool |
| CfiMemory::BlockData::isLocked(Addr block_address) const |
| { |
| return locked[blockIdx(block_address)]; |
| } |
| |
| void |
| CfiMemory::BlockData::lock(Addr block_address) |
| { |
| locked[blockIdx(block_address)] = true; |
| } |
| |
| void |
| CfiMemory::BlockData::unlock(Addr block_address) |
| { |
| locked[blockIdx(block_address)] = false; |
| } |
| |
| void |
| CfiMemory::BlockData::serialize(CheckpointOut &cp) const |
| { |
| SERIALIZE_CONTAINER(locked); |
| } |
| |
| void |
| CfiMemory::BlockData::unserialize(CheckpointIn &cp) |
| { |
| UNSERIALIZE_CONTAINER(locked); |
| } |
| |
| uint32_t |
| CfiMemory::BlockData::blockIdx(Addr block_address) const |
| { |
| return block_address / blockSize; |
| } |
| |
| void |
| CfiMemory::ProgramBuffer::setup(ssize_t buffer_size) |
| { |
| /** Clipping the size to its limit */ |
| if (buffer_size > MAX_BUFFER_SIZE) { |
| buffer_size = MAX_BUFFER_SIZE; |
| } |
| |
| buffer.resize(buffer_size); |
| std::fill(buffer.begin(), buffer.end(), 0); |
| bytesWritten = 0; |
| } |
| |
| bool |
| CfiMemory::ProgramBuffer::write(Addr flash_address, |
| void *data_ptr, ssize_t size) |
| { |
| if (bytesWritten >= buffer.size()) |
| return true; |
| |
| if (bytesWritten == 0) { |
| blockPointer = flash_address; |
| } |
| |
| const Addr offset = flash_address - blockPointer; |
| |
| if (flash_address < blockPointer || offset >= MAX_BUFFER_SIZE) |
| return true; |
| |
| std::memcpy(buffer.data() + offset, data_ptr, size); |
| bytesWritten += size; |
| |
| return false; |
| } |
| |
| bool |
| CfiMemory::ProgramBuffer::writeback() |
| { |
| if (parent.blocks.isLocked(blockPointer)) { |
| return false; |
| } else { |
| std::memcpy(parent.toHostAddr(parent.start() + blockPointer), |
| buffer.data(), bytesWritten); |
| return true; |
| } |
| } |
| |
| void |
| CfiMemory::ProgramBuffer::serialize(CheckpointOut &cp) const |
| { |
| SERIALIZE_CONTAINER(buffer); |
| SERIALIZE_SCALAR(bytesWritten); |
| SERIALIZE_SCALAR(blockPointer); |
| } |
| |
| void |
| CfiMemory::ProgramBuffer::unserialize(CheckpointIn &cp) |
| { |
| UNSERIALIZE_CONTAINER(buffer); |
| UNSERIALIZE_SCALAR(bytesWritten); |
| UNSERIALIZE_SCALAR(blockPointer); |
| } |
| |
| CfiMemory::CfiMemory(const CfiMemoryParams &p) |
| : AbstractMemory(p), |
| port(name() + ".port", *this), latency(p.latency), |
| latency_var(p.latency_var), bandwidth(p.bandwidth), isBusy(false), |
| retryReq(false), retryResp(false), |
| releaseEvent([this]{ release(); }, name()), |
| dequeueEvent([this]{ dequeue(); }, name()), |
| numberOfChips(2), |
| vendorID(p.vendor_id), |
| deviceID(p.device_id), |
| bankWidth(p.bank_width), |
| readState(CfiCommand::READ_ARRAY), writeState(CfiCommand::NO_CMD), |
| statusRegister(STATUS_READY), |
| blocks(*this, size() / p.blk_size, p.blk_size), |
| programBuffer(*this), |
| cfiQueryTable{ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| /* Query-unique ASCII string */ |
| 'Q', 'R', 'Y', |
| /* Primary Algorithm Command Set and Control = Intel/Sharp */ |
| 0x01, 0x00, |
| /* Address for Primary Algorithm extended Query */ |
| 0x31, 0x00, |
| /* Alternative Algorithm Command Set and Control Interface */ |
| 0x00, 0x00, |
| /* Address for Alternative Algorithm extended Query */ |
| 0x00, 0x00, |
| /* Vcc Minimum Program/Erase or Write voltage ([7:4].[3-0]V) */ |
| 0x45, |
| /* Vcc Maximum Program/Erase or Write voltage ([7:4].[3-0]V) */ |
| 0x55, |
| /* Vpp Minimum Program/Erase voltage (0 = No Vpp pin) */ |
| 0x00, |
| /* Vpp Minimum Program/Erase voltage (0 = No Vpp pin) */ |
| 0x00, |
| /* Typical timeout per single byte/word/D-word program: (2^N us) */ |
| 0x01, |
| /* Typical timeout for maximum-size multi-byte program: (2^N us) */ |
| 0x01, |
| /* Typical timeout per individual block erase: (2^N ms) */ |
| 0x01, |
| /* Typical timeout for full chip erase: (2^N ms) */ |
| 0x00, |
| /* Maximum timeout for byte/word/D-word program (2^N typical) */ |
| 0x00, |
| /* Maximum timeout for multi-byte program (2^N typical) */ |
| 0x00, |
| /* Maximum timeout per individual block erase (2^N typical) */ |
| 0x00, |
| /* Maximum timeout for chip erase (2^N typical) */ |
| 0x00, |
| /* Device Size in number of bytes (2^N) */ |
| static_cast<uint8_t>(log2(size())), |
| /* Flash Device Interface Code description */ |
| 0x05, 0x00, |
| /* Maximum number of bytes in multi-byte program (2^N) */ |
| static_cast<uint8_t>(bits(log2i(ProgramBuffer::MAX_BUFFER_SIZE), 7, 0)), |
| static_cast<uint8_t>(bits(log2i(ProgramBuffer::MAX_BUFFER_SIZE), 15, 8)), |
| /* Number of Erase Block Regions within device */ |
| 0x01, |
| /* Erase Block Region Information */ |
| static_cast<uint8_t>(bits(blocks.number(), 7, 0)), |
| static_cast<uint8_t>(bits(blocks.number(), 15, 8)), |
| static_cast<uint8_t>(bits(blocks.size(), 7, 0)), |
| static_cast<uint8_t>(bits(blocks.size(), 15, 8)), |
| 0x00,0x00,0x00,0x00,//empty Block region 2 info |
| 0x00,0x00,0x00,0x00,//empty Block region 3 info |
| 0x00,0x00,0x00,0x00//empty Block region 4 info |
| } |
| {} |
| |
| void |
| CfiMemory::init() |
| { |
| AbstractMemory::init(); |
| |
| // allow unconnected memories as this is used in several ruby |
| // systems at the moment |
| if (port.isConnected()) { |
| port.sendRangeChange(); |
| } |
| } |
| |
| Tick |
| CfiMemory::recvAtomic(PacketPtr pkt) |
| { |
| panic_if(pkt->cacheResponding(), "Should not see packets where cache " |
| "is responding"); |
| |
| cfiAccess(pkt); |
| return getLatency(); |
| } |
| |
| Tick |
| CfiMemory::recvAtomicBackdoor(PacketPtr pkt, MemBackdoorPtr &_backdoor) |
| { |
| Tick latency = recvAtomic(pkt); |
| |
| if (backdoor.ptr()) |
| _backdoor = &backdoor; |
| return latency; |
| } |
| |
| void |
| CfiMemory::recvFunctional(PacketPtr pkt) |
| { |
| pkt->pushLabel(name()); |
| |
| functionalAccess(pkt); |
| |
| bool done = false; |
| auto p = packetQueue.begin(); |
| // potentially update the packets in our packet queue as well |
| while (!done && p != packetQueue.end()) { |
| done = pkt->trySatisfyFunctional(p->pkt); |
| ++p; |
| } |
| |
| pkt->popLabel(); |
| } |
| |
| void |
| CfiMemory::recvMemBackdoorReq(const MemBackdoorReq &req, |
| MemBackdoorPtr &_backdoor) |
| { |
| if (backdoor.ptr()) |
| _backdoor = &backdoor; |
| } |
| |
| bool |
| CfiMemory::recvTimingReq(PacketPtr pkt) |
| { |
| panic_if(pkt->cacheResponding(), "Should not see packets where cache " |
| "is responding"); |
| |
| panic_if(!(pkt->isRead() || pkt->isWrite()), |
| "Should only see read and writes at memory controller, " |
| "saw %s to %#llx\n", pkt->cmdString(), pkt->getAddr()); |
| |
| // we should not get a new request after committing to retry the |
| // current one, but unfortunately the CPU violates this rule, so |
| // simply ignore it for now |
| if (retryReq) |
| return false; |
| |
| // if we are busy with a read or write, remember that we have to |
| // retry |
| if (isBusy) { |
| retryReq = true; |
| return false; |
| } |
| |
| // technically the packet only reaches us after the header delay, |
| // and since this is a memory controller we also need to |
| // deserialise the payload before performing any write operation |
| Tick receive_delay = pkt->headerDelay + pkt->payloadDelay; |
| pkt->headerDelay = pkt->payloadDelay = 0; |
| |
| // update the release time according to the bandwidth limit, and |
| // do so with respect to the time it takes to finish this request |
| // rather than long term as it is the short term data rate that is |
| // limited for any real memory |
| |
| // calculate an appropriate tick to release to not exceed |
| // the bandwidth limit |
| Tick duration = pkt->getSize() * bandwidth; |
| |
| // only consider ourselves busy if there is any need to wait |
| // to avoid extra events being scheduled for (infinitely) fast |
| // memories |
| if (duration != 0) { |
| schedule(releaseEvent, curTick() + duration); |
| isBusy = true; |
| } |
| |
| // go ahead and deal with the packet and put the response in the |
| // queue if there is one |
| bool needs_response = pkt->needsResponse(); |
| recvAtomic(pkt); |
| // turn packet around to go back to requester if response expected |
| if (needs_response) { |
| // recvAtomic() should already have turned packet into |
| // atomic response |
| assert(pkt->isResponse()); |
| |
| Tick when_to_send = curTick() + receive_delay + getLatency(); |
| |
| // typically this should be added at the end, so start the |
| // insertion sort with the last element, also make sure not to |
| // re-order in front of some existing packet with the same |
| // address, the latter is important as this memory effectively |
| // hands out exclusive copies (shared is not asserted) |
| auto i = packetQueue.end(); |
| --i; |
| while (i != packetQueue.begin() && when_to_send < i->tick && |
| !i->pkt->matchAddr(pkt)) { |
| --i; |
| } |
| |
| // emplace inserts the element before the position pointed to by |
| // the iterator, so advance it one step |
| packetQueue.emplace(++i, pkt, when_to_send); |
| |
| if (!retryResp && !dequeueEvent.scheduled()) |
| schedule(dequeueEvent, packetQueue.back().tick); |
| } else { |
| pendingDelete.reset(pkt); |
| } |
| |
| return true; |
| } |
| |
| void |
| CfiMemory::release() |
| { |
| assert(isBusy); |
| isBusy = false; |
| if (retryReq) { |
| retryReq = false; |
| port.sendRetryReq(); |
| } |
| } |
| |
| void |
| CfiMemory::dequeue() |
| { |
| assert(!packetQueue.empty()); |
| DeferredPacket deferred_pkt = packetQueue.front(); |
| |
| retryResp = !port.sendTimingResp(deferred_pkt.pkt); |
| |
| if (!retryResp) { |
| packetQueue.pop_front(); |
| |
| // if the queue is not empty, schedule the next dequeue event, |
| // otherwise signal that we are drained if we were asked to do so |
| if (!packetQueue.empty()) { |
| // if there were packets that got in-between then we |
| // already have an event scheduled, so use re-schedule |
| reschedule(dequeueEvent, |
| std::max(packetQueue.front().tick, curTick()), true); |
| } else if (drainState() == DrainState::Draining) { |
| DPRINTF(Drain, "Draining of CfiMemory complete\n"); |
| signalDrainDone(); |
| } |
| } |
| } |
| |
| Tick |
| CfiMemory::getLatency() const |
| { |
| return latency + |
| (latency_var ? random_mt.random<Tick>(0, latency_var) : 0); |
| } |
| |
| void |
| CfiMemory::recvRespRetry() |
| { |
| assert(retryResp); |
| |
| dequeue(); |
| } |
| |
| Port & |
| CfiMemory::getPort(const std::string &if_name, PortID idx) |
| { |
| if (if_name != "port") { |
| return AbstractMemory::getPort(if_name, idx); |
| } else { |
| return port; |
| } |
| } |
| |
| DrainState |
| CfiMemory::drain() |
| { |
| if (!packetQueue.empty()) { |
| DPRINTF(Drain, "CfiMemory Queue has requests, waiting to drain\n"); |
| return DrainState::Draining; |
| } else { |
| return DrainState::Drained; |
| } |
| } |
| |
| void |
| CfiMemory::serialize(CheckpointOut &cp) const |
| { |
| SERIALIZE_ENUM(readState); |
| SERIALIZE_ENUM(writeState); |
| |
| SERIALIZE_SCALAR(statusRegister); |
| |
| SERIALIZE_OBJ(blocks); |
| SERIALIZE_OBJ(programBuffer); |
| } |
| |
| void |
| CfiMemory::unserialize(CheckpointIn &cp) |
| { |
| UNSERIALIZE_ENUM(readState); |
| UNSERIALIZE_ENUM(writeState); |
| |
| UNSERIALIZE_SCALAR(statusRegister); |
| |
| UNSERIALIZE_OBJ(blocks); |
| UNSERIALIZE_OBJ(programBuffer); |
| } |
| |
| CfiMemory::MemoryPort::MemoryPort(const std::string& _name, |
| CfiMemory& _memory) |
| : ResponsePort(_name), mem(_memory) |
| { } |
| |
| AddrRangeList |
| CfiMemory::MemoryPort::getAddrRanges() const |
| { |
| AddrRangeList ranges; |
| ranges.push_back(mem.getAddrRange()); |
| return ranges; |
| } |
| |
| Tick |
| CfiMemory::MemoryPort::recvAtomic(PacketPtr pkt) |
| { |
| return mem.recvAtomic(pkt); |
| } |
| |
| Tick |
| CfiMemory::MemoryPort::recvAtomicBackdoor( |
| PacketPtr pkt, MemBackdoorPtr &_backdoor) |
| { |
| return mem.recvAtomicBackdoor(pkt, _backdoor); |
| } |
| |
| void |
| CfiMemory::MemoryPort::recvFunctional(PacketPtr pkt) |
| { |
| mem.recvFunctional(pkt); |
| } |
| |
| void |
| CfiMemory::MemoryPort::recvMemBackdoorReq(const MemBackdoorReq &req, |
| MemBackdoorPtr &_backdoor) |
| { |
| mem.recvMemBackdoorReq(req, _backdoor); |
| } |
| |
| bool |
| CfiMemory::MemoryPort::recvTimingReq(PacketPtr pkt) |
| { |
| return mem.recvTimingReq(pkt); |
| } |
| |
| void |
| CfiMemory::MemoryPort::recvRespRetry() |
| { |
| mem.recvRespRetry(); |
| } |
| |
| void |
| CfiMemory::cfiAccess(PacketPtr pkt) |
| { |
| if (pkt->isWrite()) { |
| write(pkt); |
| } else { |
| read(pkt); |
| } |
| } |
| |
| void |
| CfiMemory::write(PacketPtr pkt) |
| { |
| DPRINTF(CFI, "write, address: %#x, val: %#x\n", pkt->getAddr(), |
| pkt->getUintX(ByteOrder::little)); |
| |
| const Addr flash_address = pkt->getAddr() - start(); |
| |
| const uint16_t value = pkt->getUintX(ByteOrder::little) & 0xffff; |
| const auto new_cmd = static_cast<CfiCommand>(value & 0xff); |
| |
| switch (writeState) { |
| case CfiCommand::NO_CMD: |
| handleCommand(new_cmd); |
| break; |
| |
| case CfiCommand::ERASE_BLOCK_SETUP: |
| if (new_cmd == CfiCommand::BLOCK_ERASE_CONFIRM) { |
| // Erasing the block |
| // Check if block is locked |
| if (blocks.isLocked(flash_address)) { |
| statusRegister |= STATUS_LOCK_ERROR; |
| } else { |
| blocks.erase(pkt); |
| } |
| } else { |
| statusRegister |= STATUS_ERASE_ERROR; |
| } |
| writeState = CfiCommand::NO_CMD; |
| readState = CfiCommand::READ_STATUS_REG; |
| break; |
| |
| case CfiCommand::LOCK_BLOCK_SETUP: |
| if (new_cmd == CfiCommand::LOCK_BLOCK) { |
| |
| // Lock the addressed block |
| blocks.lock(flash_address); |
| readState = CfiCommand::READ_STATUS_REG; |
| |
| } else if (new_cmd == CfiCommand::UNLOCK_BLOCK) { |
| |
| // Unlock the addressed block |
| blocks.unlock(flash_address); |
| readState = CfiCommand::READ_STATUS_REG; |
| |
| } else { |
| statusRegister |= STATUS_ERASE_ERROR; |
| } |
| |
| writeState = CfiCommand::NO_CMD; |
| break; |
| |
| case CfiCommand::WORD_PROGRAM: |
| readState = CfiCommand::READ_STATUS_REG; |
| writeState = CfiCommand::NO_CMD; |
| |
| if (blocks.isLocked(flash_address)) { |
| statusRegister |= STATUS_LOCK_ERROR; |
| } else { |
| AbstractMemory::access(pkt); |
| return; |
| } |
| break; |
| |
| case CfiCommand::BUFFERED_PROGRAM_SETUP: { |
| // Buffer size in bytes |
| auto buffer_size = (value + 1) * sizeof(uint32_t); |
| |
| // Clearing the program buffer |
| programBuffer.setup(buffer_size); |
| |
| readState = CfiCommand::READ_STATUS_REG; |
| writeState = CfiCommand::BUFFER_SIZE_READ; |
| break; |
| } |
| |
| case CfiCommand::BUFFER_SIZE_READ: { |
| // Write to the buffer and check if a writeback is needed |
| // (if the buffer is full) |
| auto writeback = programBuffer.write( |
| flash_address, pkt->getPtr<void>(), pkt->getSize()); |
| |
| if (writeback) { |
| if (new_cmd == CfiCommand::BUFFERED_PROGRAM_CONFIRM) { |
| auto success = programBuffer.writeback(); |
| if (!success) |
| statusRegister |= STATUS_LOCK_ERROR; |
| |
| readState = CfiCommand::READ_STATUS_REG; |
| } else { |
| statusRegister |= STATUS_PROGRAM_LOCK_BIT; |
| } |
| writeState = CfiCommand::NO_CMD; |
| } |
| break; |
| } |
| |
| default: |
| panic("Invalid Write State\n"); |
| return; |
| } |
| |
| pkt->makeResponse(); |
| } |
| |
| void |
| CfiMemory::read(PacketPtr pkt) |
| { |
| const Addr flash_address = pkt->getAddr() - start(); |
| uint64_t value = 0; |
| |
| switch (readState) { |
| case CfiCommand::READ_STATUS_REG: |
| value = statusRegister; |
| break; |
| case CfiCommand::READ_DEVICE_ID: |
| value = readDeviceID(flash_address); |
| break; |
| case CfiCommand::READ_CFI_QUERY: |
| value = cfiQuery(flash_address); |
| break; |
| case CfiCommand::READ_ARRAY: |
| AbstractMemory::access(pkt); |
| return; |
| default: |
| panic("Invalid Read State\n"); |
| return; |
| } |
| |
| if (numberOfChips == 2) { |
| value |= (value << 16); |
| } |
| |
| pkt->setUintX(value, ByteOrder::little); |
| pkt->makeResponse(); |
| |
| DPRINTF(CFI, "read, address: %#x, val: %#x\n", pkt->getAddr(), |
| pkt->getUintX(ByteOrder::little)); |
| |
| } |
| |
| uint64_t |
| CfiMemory::readDeviceID(Addr flash_address) const |
| { |
| switch ((flash_address & 0xff) / bankWidth) { |
| case 0x00: // vendor ID |
| return vendorID; |
| case 0x01: // device ID |
| return deviceID; |
| case 0x02: // lock bit |
| return blocks.isLocked(flash_address); |
| default: |
| // Unsupported entries |
| warn("Invalid Device Identifier code: %d\n", flash_address & 0xff); |
| return 0; |
| } |
| } |
| |
| void |
| CfiMemory::handleCommand(CfiCommand new_cmd) |
| { |
| switch (new_cmd) { |
| case CfiCommand::READ_ARRAY: |
| DPRINTF(CFI, "CFI Command: Read Array\n"); |
| readState = CfiCommand::READ_ARRAY; |
| break; |
| case CfiCommand::READ_DEVICE_ID: |
| DPRINTF(CFI, "CFI Command: Read Device Identifier\n"); |
| readState = CfiCommand::READ_DEVICE_ID; |
| break; |
| case CfiCommand::READ_CFI_QUERY: |
| DPRINTF(CFI, "CFI Command: CFI Query\n"); |
| readState = CfiCommand::READ_CFI_QUERY; |
| break; |
| case CfiCommand::READ_STATUS_REG: |
| DPRINTF(CFI, "CFI Command: Read Status Register\n"); |
| readState = CfiCommand::READ_STATUS_REG; |
| break; |
| case CfiCommand::CLEAR_STATUS_REG: |
| DPRINTF(CFI, "CFI Command: Clear Status Register\n"); |
| statusRegister = STATUS_READY; |
| break; |
| case CfiCommand::BUFFERED_PROGRAM_CONFIRM: |
| DPRINTF(CFI, "CFI Command: Buffered Program Confirm\n"); |
| break; |
| case CfiCommand::ERASE_BLOCK_SETUP: |
| DPRINTF(CFI, "CFI Command: Erase Block Setup\n"); |
| writeState = CfiCommand::ERASE_BLOCK_SETUP; |
| readState = CfiCommand::READ_STATUS_REG; |
| break; |
| case CfiCommand::LOCK_BLOCK_SETUP: |
| DPRINTF(CFI, "CFI Command: Lock Block Setup\n"); |
| writeState = CfiCommand::LOCK_BLOCK_SETUP; |
| break; |
| case CfiCommand::WORD_PROGRAM: |
| DPRINTF(CFI, "CFI Command: Word Program\n"); |
| writeState = CfiCommand::WORD_PROGRAM; |
| readState = CfiCommand::READ_STATUS_REG; |
| break; |
| case CfiCommand::BUFFERED_PROGRAM_SETUP: |
| DPRINTF(CFI, "CFI Command: Buffered Program Setup\n"); |
| writeState = CfiCommand::BUFFERED_PROGRAM_SETUP; |
| readState = CfiCommand::READ_STATUS_REG; |
| break; |
| case CfiCommand::AMD_RESET: |
| //because of how u-boot works and reset the flash |
| //we have to ignore the AMD RESET explicitly |
| // (see the function __flash_cmd_reset in drivers/mtd/cfi_flash.c) |
| break; |
| default: |
| panic("Don't know what to do with %#x\n", |
| static_cast<uint16_t>(new_cmd)); |
| } |
| |
| } |
| |
| uint64_t |
| CfiMemory::cfiQuery(Addr flash_address) |
| { |
| flash_address /= bankWidth; |
| |
| panic_if(flash_address >= sizeof(cfiQueryTable), |
| "Acessing invalid entry in CFI query table (addr=%#x)", |
| flash_address); |
| |
| return cfiQueryTable[flash_address]; |
| } |
| |
| void |
| CfiMemory::BlockData::erase(PacketPtr pkt) |
| { |
| auto host_address = parent.toHostAddr(pkt->getAddr()); |
| std::memset(host_address, 0xff, blockSize); |
| } |
| |
| } // namespace memory |
| } // namespace gem5 |