| # Copyright (c) 2015 Advanced Micro Devices, Inc. |
| # All rights reserved. |
| # |
| # For use for simulation and test purposes only |
| # |
| # Redistribution and use in source and binary forms, with or without |
| # modification, are permitted provided that the following conditions are met: |
| # |
| # 1. Redistributions of source code must retain the above copyright notice, |
| # this list of conditions and the following disclaimer. |
| # |
| # 2. Redistributions in binary form must reproduce the above copyright notice, |
| # this list of conditions and the following disclaimer in the documentation |
| # and/or other materials provided with the distribution. |
| # |
| # 3. Neither the name of the copyright holder nor the names of its |
| # contributors may be used to endorse or promote products derived from this |
| # software without specific prior written permission. |
| # |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| # POSSIBILITY OF SUCH DAMAGE. |
| |
| import argparse, os, re, getpass |
| import math |
| import glob |
| import inspect |
| |
| import m5 |
| from m5.objects import * |
| from m5.util import addToPath |
| |
| addToPath('../') |
| |
| from ruby import Ruby |
| |
| from common import Options |
| from common import Simulation |
| from common import GPUTLBOptions, GPUTLBConfig |
| |
| import hsaTopology |
| from common import FileSystemConfig |
| |
| |
| # Adding script options |
| parser = argparse.ArgumentParser() |
| Options.addCommonOptions(parser) |
| Options.addSEOptions(parser) |
| |
| parser.add_argument("--cpu-only-mode", action="store_true", default=False, |
| help="APU mode. Used to take care of problems in " |
| "Ruby.py while running APU protocols") |
| parser.add_argument("-u", "--num-compute-units", type=int, default=4, |
| help="number of GPU compute units"), |
| parser.add_argument("--num-cp", type=int, default=0, |
| help="Number of GPU Command Processors (CP)") |
| parser.add_argument("--benchmark-root", |
| help="Root of benchmark directory tree") |
| |
| # not super important now, but to avoid putting the number 4 everywhere, make |
| # it an option/knob |
| parser.add_argument("--cu-per-sqc", type=int, default=4, help="number of CUs" |
| "sharing an SQC (icache, and thus icache TLB)") |
| parser.add_argument('--cu-per-scalar-cache', type=int, default=4, |
| help='Number of CUs sharing a scalar cache') |
| parser.add_argument("--simds-per-cu", type=int, default=4, help="SIMD units" |
| "per CU") |
| parser.add_argument('--cu-per-sa', type=int, default=4, |
| help='Number of CUs per shader array. This must be a ' |
| 'multiple of options.cu-per-sqc and options.cu-per-scalar') |
| parser.add_argument('--sa-per-complex', type=int, default=1, |
| help='Number of shader arrays per complex') |
| parser.add_argument('--num-gpu-complexes', type=int, default=1, |
| help='Number of GPU complexes') |
| parser.add_argument("--wf-size", type=int, default=64, |
| help="Wavefront size(in workitems)") |
| parser.add_argument("--sp-bypass-path-length", type=int, default=4, |
| help="Number of stages of bypass path in vector ALU for " |
| "Single Precision ops") |
| parser.add_argument("--dp-bypass-path-length", type=int, default=4, |
| help="Number of stages of bypass path in vector ALU for " |
| "Double Precision ops") |
| # issue period per SIMD unit: number of cycles before issuing another vector |
| parser.add_argument( |
| "--issue-period", type=int, default=4, |
| help="Number of cycles per vector instruction issue period") |
| parser.add_argument("--glbmem-wr-bus-width", type=int, default=32, |
| help="VGPR to Coalescer (Global Memory) data bus width " |
| "in bytes") |
| parser.add_argument("--glbmem-rd-bus-width", type=int, default=32, |
| help="Coalescer to VGPR (Global Memory) data bus width in " |
| "bytes") |
| # Currently we only support 1 local memory pipe |
| parser.add_argument("--shr-mem-pipes-per-cu", type=int, default=1, |
| help="Number of Shared Memory pipelines per CU") |
| # Currently we only support 1 global memory pipe |
| parser.add_argument("--glb-mem-pipes-per-cu", type=int, default=1, |
| help="Number of Global Memory pipelines per CU") |
| parser.add_argument("--wfs-per-simd", type=int, default=10, help="Number of " |
| "WF slots per SIMD") |
| |
| parser.add_argument("--registerManagerPolicy", type=str, default="static", |
| help="Register manager policy") |
| parser.add_argument("--vreg-file-size", type=int, default=2048, |
| help="number of physical vector registers per SIMD") |
| parser.add_argument("--vreg-min-alloc", type=int, default=4, |
| help="Minimum number of registers that can be allocated " |
| "from the VRF. The total number of registers will be " |
| "aligned to this value.") |
| |
| parser.add_argument("--sreg-file-size", type=int, default=2048, |
| help="number of physical vector registers per SIMD") |
| parser.add_argument("--sreg-min-alloc", type=int, default=4, |
| help="Minimum number of registers that can be allocated " |
| "from the SRF. The total number of registers will be " |
| "aligned to this value.") |
| |
| parser.add_argument("--bw-scalor", type=int, default=0, |
| help="bandwidth scalor for scalability analysis") |
| parser.add_argument("--CPUClock", type=str, default="2GHz", |
| help="CPU clock") |
| parser.add_argument("--gpu-clock", type=str, default="1GHz", |
| help="GPU clock") |
| parser.add_argument("--cpu-voltage", action="store", type=str, |
| default='1.0V', |
| help="""CPU voltage domain""") |
| parser.add_argument("--gpu-voltage", action="store", type=str, |
| default='1.0V', |
| help="""CPU voltage domain""") |
| parser.add_argument("--CUExecPolicy", type=str, default="OLDEST-FIRST", |
| help="WF exec policy (OLDEST-FIRST, ROUND-ROBIN)") |
| parser.add_argument("--SegFaultDebug", action="store_true", |
| help="checks for GPU seg fault before TLB access") |
| parser.add_argument("--FunctionalTLB", action="store_true", |
| help="Assumes TLB has no latency") |
| parser.add_argument("--LocalMemBarrier", action="store_true", |
| help="Barrier does not wait for writethroughs to complete") |
| parser.add_argument( |
| "--countPages", action="store_true", |
| help="Count Page Accesses and output in per-CU output files") |
| parser.add_argument("--TLB-prefetch", type=int, help="prefetch depth for" |
| "TLBs") |
| parser.add_argument("--pf-type", type=str, help="type of prefetch: " |
| "PF_CU, PF_WF, PF_PHASE, PF_STRIDE") |
| parser.add_argument("--pf-stride", type=int, help="set prefetch stride") |
| parser.add_argument("--numLdsBanks", type=int, default=32, |
| help="number of physical banks per LDS module") |
| parser.add_argument("--ldsBankConflictPenalty", type=int, default=1, |
| help="number of cycles per LDS bank conflict") |
| parser.add_argument("--lds-size", type=int, default=65536, |
| help="Size of the LDS in bytes") |
| parser.add_argument('--fast-forward-pseudo-op', action='store_true', |
| help='fast forward using kvm until the m5_switchcpu' |
| ' pseudo-op is encountered, then switch cpus. subsequent' |
| ' m5_switchcpu pseudo-ops will toggle back and forth') |
| parser.add_argument("--num-hw-queues", type=int, default=10, |
| help="number of hw queues in packet processor") |
| parser.add_argument("--reg-alloc-policy", type=str, default="simple", |
| help="register allocation policy (simple/dynamic)") |
| |
| parser.add_argument("--dgpu", action="store_true", default=False, |
| help="Configure the system as a dGPU instead of an APU. " |
| "The dGPU config has its own local memory pool and is not " |
| "coherent with the host through hardware. Data is " |
| "transfered from host to device memory using runtime calls " |
| "that copy data over a PCIe-like IO bus.") |
| |
| # Mtype option |
| #-- 1 1 1 C_RW_S (Cached-ReadWrite-Shared) |
| #-- 1 1 0 C_RW_US (Cached-ReadWrite-Unshared) |
| #-- 1 0 1 C_RO_S (Cached-ReadOnly-Shared) |
| #-- 1 0 0 C_RO_US (Cached-ReadOnly-Unshared) |
| #-- 0 1 x UC_L2 (Uncached_GL2) |
| #-- 0 0 x UC_All (Uncached_All_Load) |
| # default value: 5/C_RO_S (only allow caching in GL2 for read. Shared) |
| parser.add_argument("--m-type", type=int, default=5, |
| help="Default Mtype for GPU memory accesses. This is the " |
| "value used for all memory accesses on an APU and is the " |
| "default mode for dGPU unless explicitly overwritten by " |
| "the driver on a per-page basis. Valid values are " |
| "between 0-7") |
| |
| parser.add_argument("--gfx-version", type=str, default='gfx801', |
| choices=GfxVersion.vals, |
| help="Gfx version for gpu" |
| "Note: gfx902 is not fully supported by ROCm") |
| |
| Ruby.define_options(parser) |
| |
| # add TLB options to the parser |
| GPUTLBOptions.tlb_options(parser) |
| |
| args = parser.parse_args() |
| |
| # The GPU cache coherence protocols only work with the backing store |
| args.access_backing_store = True |
| |
| # if benchmark root is specified explicitly, that overrides the search path |
| if args.benchmark_root: |
| benchmark_path = [args.benchmark_root] |
| else: |
| # Set default benchmark search path to current dir |
| benchmark_path = ['.'] |
| |
| ########################## Sanity Check ######################## |
| |
| # Currently the gpu model requires ruby |
| if buildEnv['PROTOCOL'] == 'None': |
| fatal("GPU model requires ruby") |
| |
| # Currently the gpu model requires only timing or detailed CPU |
| if not (args.cpu_type == "TimingSimpleCPU" or |
| args.cpu_type == "DerivO3CPU"): |
| fatal("GPU model requires TimingSimpleCPU or DerivO3CPU") |
| |
| # This file can support multiple compute units |
| assert(args.num_compute_units >= 1) |
| |
| # Currently, the sqc (I-Cache of GPU) is shared by |
| # multiple compute units(CUs). The protocol works just fine |
| # even if sqc is not shared. Overriding this option here |
| # so that the user need not explicitly set this (assuming |
| # sharing sqc is the common usage) |
| n_cu = args.num_compute_units |
| num_sqc = int(math.ceil(float(n_cu) / args.cu_per_sqc)) |
| args.num_sqc = num_sqc # pass this to Ruby |
| num_scalar_cache = int(math.ceil(float(n_cu) / args.cu_per_scalar_cache)) |
| args.num_scalar_cache = num_scalar_cache |
| |
| print('Num SQC = ', num_sqc, 'Num scalar caches = ', num_scalar_cache, |
| 'Num CU = ', n_cu) |
| |
| ########################## Creating the GPU system ######################## |
| # shader is the GPU |
| shader = Shader(n_wf = args.wfs_per_simd, |
| clk_domain = SrcClockDomain( |
| clock = args.gpu_clock, |
| voltage_domain = VoltageDomain( |
| voltage = args.gpu_voltage))) |
| |
| # VIPER GPU protocol implements release consistency at GPU side. So, |
| # we make their writes visible to the global memory and should read |
| # from global memory during kernal boundary. The pipeline initiates |
| # (or do not initiate) the acquire/release operation depending on |
| # these impl_kern_launch_rel and impl_kern_end_rel flags. The flag=true |
| # means pipeline initiates a acquire/release operation at kernel launch/end. |
| # VIPER protocol is write-through based, and thus only impl_kern_launch_acq |
| # needs to set. |
| if (buildEnv['PROTOCOL'] == 'GPU_VIPER'): |
| shader.impl_kern_launch_acq = True |
| shader.impl_kern_end_rel = False |
| else: |
| shader.impl_kern_launch_acq = True |
| shader.impl_kern_end_rel = True |
| |
| # Switching off per-lane TLB by default |
| per_lane = False |
| if args.TLB_config == "perLane": |
| per_lane = True |
| |
| # List of compute units; one GPU can have multiple compute units |
| compute_units = [] |
| for i in range(n_cu): |
| compute_units.append(ComputeUnit(cu_id = i, perLaneTLB = per_lane, |
| num_SIMDs = args.simds_per_cu, |
| wf_size = args.wf_size, |
| spbypass_pipe_length = \ |
| args.sp_bypass_path_length, |
| dpbypass_pipe_length = \ |
| args.dp_bypass_path_length, |
| issue_period = args.issue_period, |
| coalescer_to_vrf_bus_width = \ |
| args.glbmem_rd_bus_width, |
| vrf_to_coalescer_bus_width = \ |
| args.glbmem_wr_bus_width, |
| num_global_mem_pipes = \ |
| args.glb_mem_pipes_per_cu, |
| num_shared_mem_pipes = \ |
| args.shr_mem_pipes_per_cu, |
| n_wf = args.wfs_per_simd, |
| execPolicy = args.CUExecPolicy, |
| debugSegFault = args.SegFaultDebug, |
| functionalTLB = args.FunctionalTLB, |
| localMemBarrier = args.LocalMemBarrier, |
| countPages = args.countPages, |
| localDataStore = \ |
| LdsState(banks = args.numLdsBanks, |
| bankConflictPenalty = \ |
| args.ldsBankConflictPenalty, |
| size = args.lds_size))) |
| wavefronts = [] |
| vrfs = [] |
| vrf_pool_mgrs = [] |
| srfs = [] |
| srf_pool_mgrs = [] |
| for j in range(args.simds_per_cu): |
| for k in range(shader.n_wf): |
| wavefronts.append(Wavefront(simdId = j, wf_slot_id = k, |
| wf_size = args.wf_size)) |
| |
| if args.reg_alloc_policy == "simple": |
| vrf_pool_mgrs.append(SimplePoolManager(pool_size = \ |
| args.vreg_file_size, |
| min_alloc = \ |
| args.vreg_min_alloc)) |
| srf_pool_mgrs.append(SimplePoolManager(pool_size = \ |
| args.sreg_file_size, |
| min_alloc = \ |
| args.vreg_min_alloc)) |
| elif args.reg_alloc_policy == "dynamic": |
| vrf_pool_mgrs.append(DynPoolManager(pool_size = \ |
| args.vreg_file_size, |
| min_alloc = \ |
| args.vreg_min_alloc)) |
| srf_pool_mgrs.append(DynPoolManager(pool_size = \ |
| args.sreg_file_size, |
| min_alloc = \ |
| args.vreg_min_alloc)) |
| |
| vrfs.append(VectorRegisterFile(simd_id=j, wf_size=args.wf_size, |
| num_regs=args.vreg_file_size)) |
| srfs.append(ScalarRegisterFile(simd_id=j, wf_size=args.wf_size, |
| num_regs=args.sreg_file_size)) |
| |
| compute_units[-1].wavefronts = wavefronts |
| compute_units[-1].vector_register_file = vrfs |
| compute_units[-1].scalar_register_file = srfs |
| compute_units[-1].register_manager = \ |
| RegisterManager(policy=args.registerManagerPolicy, |
| vrf_pool_managers=vrf_pool_mgrs, |
| srf_pool_managers=srf_pool_mgrs) |
| if args.TLB_prefetch: |
| compute_units[-1].prefetch_depth = args.TLB_prefetch |
| compute_units[-1].prefetch_prev_type = args.pf_type |
| |
| # attach the LDS and the CU to the bus (actually a Bridge) |
| compute_units[-1].ldsPort = compute_units[-1].ldsBus.cpu_side_port |
| compute_units[-1].ldsBus.mem_side_port = \ |
| compute_units[-1].localDataStore.cuPort |
| |
| # Attach compute units to GPU |
| shader.CUs = compute_units |
| |
| ########################## Creating the CPU system ######################## |
| # The shader core will be whatever is after the CPU cores are accounted for |
| shader_idx = args.num_cpus |
| |
| # The command processor will be whatever is after the shader is accounted for |
| cp_idx = shader_idx + 1 |
| cp_list = [] |
| |
| # List of CPUs |
| cpu_list = [] |
| |
| CpuClass, mem_mode = Simulation.getCPUClass(args.cpu_type) |
| if CpuClass == AtomicSimpleCPU: |
| fatal("AtomicSimpleCPU is not supported") |
| if mem_mode != 'timing': |
| fatal("Only the timing memory mode is supported") |
| shader.timing = True |
| |
| if args.fast_forward and args.fast_forward_pseudo_op: |
| fatal("Cannot fast-forward based both on the number of instructions and" |
| " on pseudo-ops") |
| fast_forward = args.fast_forward or args.fast_forward_pseudo_op |
| |
| if fast_forward: |
| FutureCpuClass, future_mem_mode = CpuClass, mem_mode |
| |
| CpuClass = X86KvmCPU |
| mem_mode = 'atomic_noncaching' |
| # Leave shader.timing untouched, because its value only matters at the |
| # start of the simulation and because we require switching cpus |
| # *before* the first kernel launch. |
| |
| future_cpu_list = [] |
| |
| # Initial CPUs to be used during fast-forwarding. |
| for i in range(args.num_cpus): |
| cpu = CpuClass(cpu_id = i, |
| clk_domain = SrcClockDomain( |
| clock = args.CPUClock, |
| voltage_domain = VoltageDomain( |
| voltage = args.cpu_voltage))) |
| cpu_list.append(cpu) |
| |
| if args.fast_forward: |
| cpu.max_insts_any_thread = int(args.fast_forward) |
| |
| if fast_forward: |
| MainCpuClass = FutureCpuClass |
| else: |
| MainCpuClass = CpuClass |
| |
| # CPs to be used throughout the simulation. |
| for i in range(args.num_cp): |
| cp = MainCpuClass(cpu_id = args.num_cpus + i, |
| clk_domain = SrcClockDomain( |
| clock = args.CPUClock, |
| voltage_domain = VoltageDomain( |
| voltage = args.cpu_voltage))) |
| cp_list.append(cp) |
| |
| # Main CPUs (to be used after fast-forwarding if fast-forwarding is specified). |
| for i in range(args.num_cpus): |
| cpu = MainCpuClass(cpu_id = i, |
| clk_domain = SrcClockDomain( |
| clock = args.CPUClock, |
| voltage_domain = VoltageDomain( |
| voltage = args.cpu_voltage))) |
| if fast_forward: |
| cpu.switched_out = True |
| future_cpu_list.append(cpu) |
| else: |
| cpu_list.append(cpu) |
| |
| host_cpu = cpu_list[0] |
| |
| hsapp_gpu_map_vaddr = 0x200000000 |
| hsapp_gpu_map_size = 0x1000 |
| hsapp_gpu_map_paddr = int(Addr(args.mem_size)) |
| |
| if args.dgpu: |
| # Default --m-type for dGPU is write-back gl2 with system coherence |
| # (coherence at the level of the system directory between other dGPUs and |
| # CPUs) managed by kernel boundary flush operations targeting the gl2. |
| args.m_type = 6 |
| |
| # HSA kernel mode driver |
| # dGPUPoolID is 0 because we only have one memory pool |
| gpu_driver = GPUComputeDriver(filename = "kfd", isdGPU = args.dgpu, |
| gfxVersion = args.gfx_version, |
| dGPUPoolID = 0, m_type = args.m_type) |
| |
| renderDriNum = 128 |
| render_driver = GPURenderDriver(filename = f'dri/renderD{renderDriNum}') |
| |
| # Creating the GPU kernel launching components: that is the HSA |
| # packet processor (HSAPP), GPU command processor (CP), and the |
| # dispatcher. |
| gpu_hsapp = HSAPacketProcessor(pioAddr=hsapp_gpu_map_paddr, |
| numHWQueues=args.num_hw_queues) |
| dispatcher = GPUDispatcher() |
| gpu_cmd_proc = GPUCommandProcessor(hsapp=gpu_hsapp, |
| dispatcher=dispatcher) |
| gpu_driver.device = gpu_cmd_proc |
| shader.dispatcher = dispatcher |
| shader.gpu_cmd_proc = gpu_cmd_proc |
| |
| # Create and assign the workload Check for rel_path in elements of |
| # base_list using test, returning the first full path that satisfies test |
| def find_path(base_list, rel_path, test): |
| for base in base_list: |
| if not base: |
| # base could be None if environment var not set |
| continue |
| full_path = os.path.join(base, rel_path) |
| if test(full_path): |
| return full_path |
| fatal("%s not found in %s" % (rel_path, base_list)) |
| |
| def find_file(base_list, rel_path): |
| return find_path(base_list, rel_path, os.path.isfile) |
| |
| executable = find_path(benchmark_path, args.cmd, os.path.exists) |
| # It's common for a benchmark to be in a directory with the same |
| # name as the executable, so we handle that automatically |
| if os.path.isdir(executable): |
| benchmark_path = [executable] |
| executable = find_file(benchmark_path, args.cmd) |
| |
| if args.env: |
| with open(args.env, 'r') as f: |
| env = [line.rstrip() for line in f] |
| else: |
| env = ['LD_LIBRARY_PATH=%s' % ':'.join([ |
| os.getenv('ROCM_PATH','/opt/rocm')+'/lib', |
| os.getenv('HCC_HOME','/opt/rocm/hcc')+'/lib', |
| os.getenv('HSA_PATH','/opt/rocm/hsa')+'/lib', |
| os.getenv('HIP_PATH','/opt/rocm/hip')+'/lib', |
| os.getenv('ROCM_PATH','/opt/rocm')+'/libhsakmt/lib', |
| os.getenv('ROCM_PATH','/opt/rocm')+'/miopen/lib', |
| os.getenv('ROCM_PATH','/opt/rocm')+'/miopengemm/lib', |
| os.getenv('ROCM_PATH','/opt/rocm')+'/hipblas/lib', |
| os.getenv('ROCM_PATH','/opt/rocm')+'/rocblas/lib', |
| "/usr/lib/x86_64-linux-gnu" |
| ]), |
| 'HOME=%s' % os.getenv('HOME','/'), |
| # Disable the VM fault handler signal creation for dGPUs also |
| # forces the use of DefaultSignals instead of driver-controlled |
| # InteruptSignals throughout the runtime. DefaultSignals poll |
| # on memory in the runtime, while InteruptSignals call into the |
| # driver. |
| "HSA_ENABLE_INTERRUPT=1", |
| # We don't have an SDMA hardware model, so need to fallback to |
| # vector copy kernels for dGPU memcopies to/from host and device. |
| "HSA_ENABLE_SDMA=0"] |
| |
| process = Process(executable = executable, cmd = [args.cmd] |
| + args.options.split(), |
| drivers = [gpu_driver, render_driver], env = env) |
| |
| for cpu in cpu_list: |
| cpu.createThreads() |
| cpu.workload = process |
| |
| for cp in cp_list: |
| cp.workload = host_cpu.workload |
| |
| if fast_forward: |
| for i in range(len(future_cpu_list)): |
| future_cpu_list[i].workload = cpu_list[i].workload |
| future_cpu_list[i].createThreads() |
| |
| ########################## Create the overall system ######################## |
| # List of CPUs that must be switched when moving between KVM and simulation |
| if fast_forward: |
| switch_cpu_list = \ |
| [(cpu_list[i], future_cpu_list[i]) for i in range(args.num_cpus)] |
| |
| # Full list of processing cores in the system. |
| cpu_list = cpu_list + [shader] + cp_list |
| |
| # creating the overall system |
| # notice the cpu list is explicitly added as a parameter to System |
| system = System(cpu = cpu_list, |
| mem_ranges = [AddrRange(args.mem_size)], |
| cache_line_size = args.cacheline_size, |
| mem_mode = mem_mode, |
| workload = SEWorkload.init_compatible(executable)) |
| if fast_forward: |
| system.future_cpu = future_cpu_list |
| system.voltage_domain = VoltageDomain(voltage = args.sys_voltage) |
| system.clk_domain = SrcClockDomain(clock = args.sys_clock, |
| voltage_domain = system.voltage_domain) |
| |
| if fast_forward: |
| have_kvm_support = 'BaseKvmCPU' in globals() |
| if have_kvm_support and buildEnv['TARGET_ISA'] == "x86": |
| system.vm = KvmVM() |
| for i in range(len(host_cpu.workload)): |
| host_cpu.workload[i].useArchPT = True |
| host_cpu.workload[i].kvmInSE = True |
| else: |
| fatal("KvmCPU can only be used in SE mode with x86") |
| |
| # configure the TLB hierarchy |
| GPUTLBConfig.config_tlb_hierarchy(args, system, shader_idx) |
| |
| # create Ruby system |
| system.piobus = IOXBar(width=32, response_latency=0, |
| frontend_latency=0, forward_latency=0) |
| dma_list = [gpu_hsapp, gpu_cmd_proc] |
| Ruby.create_system(args, None, system, None, dma_list, None) |
| system.ruby.clk_domain = SrcClockDomain(clock = args.ruby_clock, |
| voltage_domain = system.voltage_domain) |
| gpu_cmd_proc.pio = system.piobus.mem_side_ports |
| gpu_hsapp.pio = system.piobus.mem_side_ports |
| |
| for i, dma_device in enumerate(dma_list): |
| exec('system.dma_cntrl%d.clk_domain = system.ruby.clk_domain' % i) |
| |
| # attach the CPU ports to Ruby |
| for i in range(args.num_cpus): |
| ruby_port = system.ruby._cpu_ports[i] |
| |
| # Create interrupt controller |
| system.cpu[i].createInterruptController() |
| |
| # Connect cache port's to ruby |
| system.cpu[i].icache_port = ruby_port.in_ports |
| system.cpu[i].dcache_port = ruby_port.in_ports |
| |
| ruby_port.mem_request_port = system.piobus.cpu_side_ports |
| if buildEnv['TARGET_ISA'] == "x86": |
| system.cpu[i].interrupts[0].pio = system.piobus.mem_side_ports |
| system.cpu[i].interrupts[0].int_requestor = \ |
| system.piobus.cpu_side_ports |
| system.cpu[i].interrupts[0].int_responder = \ |
| system.piobus.mem_side_ports |
| if fast_forward: |
| system.cpu[i].mmu.connectWalkerPorts( |
| ruby_port.in_ports, ruby_port.in_ports) |
| |
| # attach CU ports to Ruby |
| # Because of the peculiarities of the CP core, you may have 1 CPU but 2 |
| # sequencers and thus 2 _cpu_ports created. Your GPUs shouldn't be |
| # hooked up until after the CP. To make this script generic, figure out |
| # the index as below, but note that this assumes there is one sequencer |
| # per compute unit and one sequencer per SQC for the math to work out |
| # correctly. |
| gpu_port_idx = len(system.ruby._cpu_ports) \ |
| - args.num_compute_units - args.num_sqc \ |
| - args.num_scalar_cache |
| gpu_port_idx = gpu_port_idx - args.num_cp * 2 |
| |
| # Connect token ports. For this we need to search through the list of all |
| # sequencers, since the TCP coalescers will not necessarily be first. Only |
| # TCP coalescers use a token port for back pressure. |
| token_port_idx = 0 |
| for i in range(len(system.ruby._cpu_ports)): |
| if isinstance(system.ruby._cpu_ports[i], VIPERCoalescer): |
| system.cpu[shader_idx].CUs[token_port_idx].gmTokenPort = \ |
| system.ruby._cpu_ports[i].gmTokenPort |
| token_port_idx += 1 |
| |
| wavefront_size = args.wf_size |
| for i in range(n_cu): |
| # The pipeline issues wavefront_size number of uncoalesced requests |
| # in one GPU issue cycle. Hence wavefront_size mem ports. |
| for j in range(wavefront_size): |
| system.cpu[shader_idx].CUs[i].memory_port[j] = \ |
| system.ruby._cpu_ports[gpu_port_idx].in_ports[j] |
| gpu_port_idx += 1 |
| |
| for i in range(n_cu): |
| if i > 0 and not i % args.cu_per_sqc: |
| print("incrementing idx on ", i) |
| gpu_port_idx += 1 |
| system.cpu[shader_idx].CUs[i].sqc_port = \ |
| system.ruby._cpu_ports[gpu_port_idx].in_ports |
| gpu_port_idx = gpu_port_idx + 1 |
| |
| for i in range(n_cu): |
| if i > 0 and not i % args.cu_per_scalar_cache: |
| print("incrementing idx on ", i) |
| gpu_port_idx += 1 |
| system.cpu[shader_idx].CUs[i].scalar_port = \ |
| system.ruby._cpu_ports[gpu_port_idx].in_ports |
| gpu_port_idx = gpu_port_idx + 1 |
| |
| # attach CP ports to Ruby |
| for i in range(args.num_cp): |
| system.cpu[cp_idx].createInterruptController() |
| system.cpu[cp_idx].dcache_port = \ |
| system.ruby._cpu_ports[gpu_port_idx + i * 2].in_ports |
| system.cpu[cp_idx].icache_port = \ |
| system.ruby._cpu_ports[gpu_port_idx + i * 2 + 1].in_ports |
| system.cpu[cp_idx].interrupts[0].pio = system.piobus.mem_side_ports |
| system.cpu[cp_idx].interrupts[0].int_requestor = \ |
| system.piobus.cpu_side_ports |
| system.cpu[cp_idx].interrupts[0].int_responder = \ |
| system.piobus.mem_side_ports |
| cp_idx = cp_idx + 1 |
| |
| ################# Connect the CPU and GPU via GPU Dispatcher ################## |
| # CPU rings the GPU doorbell to notify a pending task |
| # using this interface. |
| # And GPU uses this interface to notify the CPU of task completion |
| # The communcation happens through emulated driver. |
| |
| # Note this implicit setting of the cpu_pointer, shader_pointer and tlb array |
| # parameters must be after the explicit setting of the System cpu list |
| if fast_forward: |
| shader.cpu_pointer = future_cpu_list[0] |
| else: |
| shader.cpu_pointer = host_cpu |
| |
| ########################## Start simulation ######################## |
| |
| redirect_paths = [RedirectPath(app_path = "/proc", |
| host_paths = |
| ["%s/fs/proc" % m5.options.outdir]), |
| RedirectPath(app_path = "/sys", |
| host_paths = |
| ["%s/fs/sys" % m5.options.outdir]), |
| RedirectPath(app_path = "/tmp", |
| host_paths = |
| ["%s/fs/tmp" % m5.options.outdir])] |
| |
| system.redirect_paths = redirect_paths |
| |
| root = Root(system=system, full_system=False) |
| |
| # Create the /sys/devices filesystem for the simulator so that the HSA Runtime |
| # knows what type of GPU hardware we are simulating |
| if args.dgpu: |
| assert (args.gfx_version in ['gfx803', 'gfx900']),\ |
| "Incorrect gfx version for dGPU" |
| if args.gfx_version == 'gfx803': |
| hsaTopology.createFijiTopology(args) |
| elif args.gfx_version == 'gfx900': |
| hsaTopology.createVegaTopology(args) |
| else: |
| assert (args.gfx_version in ['gfx801', 'gfx902']),\ |
| "Incorrect gfx version for APU" |
| hsaTopology.createCarrizoTopology(args) |
| |
| m5.ticks.setGlobalFrequency('1THz') |
| if args.abs_max_tick: |
| maxtick = args.abs_max_tick |
| else: |
| maxtick = m5.MaxTick |
| |
| # Benchmarks support work item annotations |
| Simulation.setWorkCountOptions(system, args) |
| |
| # Checkpointing is not supported by APU model |
| if (args.checkpoint_dir != None or |
| args.checkpoint_restore != None): |
| fatal("Checkpointing not supported by apu model") |
| |
| checkpoint_dir = None |
| m5.instantiate(checkpoint_dir) |
| |
| # Map workload to this address space |
| host_cpu.workload[0].map(0x10000000, 0x200000000, 4096) |
| |
| if args.fast_forward: |
| print("Switch at instruction count: %d" % cpu_list[0].max_insts_any_thread) |
| |
| exit_event = m5.simulate(maxtick) |
| |
| if args.fast_forward: |
| if exit_event.getCause() == "a thread reached the max instruction count": |
| m5.switchCpus(system, switch_cpu_list) |
| print("Switched CPUS @ tick %s" % (m5.curTick())) |
| m5.stats.reset() |
| exit_event = m5.simulate(maxtick - m5.curTick()) |
| elif args.fast_forward_pseudo_op: |
| while exit_event.getCause() == "switchcpu": |
| # If we are switching *to* kvm, then the current stats are meaningful |
| # Note that we don't do any warmup by default |
| if type(switch_cpu_list[0][0]) == FutureCpuClass: |
| print("Dumping stats...") |
| m5.stats.dump() |
| m5.switchCpus(system, switch_cpu_list) |
| print("Switched CPUS @ tick %s" % (m5.curTick())) |
| m5.stats.reset() |
| # This lets us switch back and forth without keeping a counter |
| switch_cpu_list = [(x[1], x[0]) for x in switch_cpu_list] |
| exit_event = m5.simulate(maxtick - m5.curTick()) |
| |
| print("Ticks:", m5.curTick()) |
| print('Exiting because ', exit_event.getCause()) |
| |
| sys.exit(exit_event.getCode()) |