blob: 153060ca476014ad848c1c801b057e0a0f77e45c [file] [log] [blame]
// Copyright (c) 2007-2008 The Hewlett-Packard Development Company
// All rights reserved.
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder. You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//////////////////////////////////////////////////////////////////////////
//
// RegOp Microop templates
//
//////////////////////////////////////////////////////////////////////////
def template MicroRegOpExecute {{
Fault
%(class_name)s::execute(ExecContext *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
DPRINTF(X86, "The data size is %d\n", dataSize);
%(op_decl)s;
%(op_rd)s;
[[maybe_unused]] RegVal result;
if (%(cond_check)s) {
%(code)s;
%(flag_code)s;
} else {
%(else_code)s;
}
//Write the resulting state to the execution context
if (fault == NoFault) {
%(op_wb)s;
}
return fault;
}
}};
def template MicroRegOpDeclare {{
class %(class_name)s : public %(base_class)s
{
private:
%(reg_idx_arr_decl)s;
public:
template <typename ...Args>
%(class_name)s(ExtMachInst mach_inst, const char *inst_mnem,
uint64_t set_flags, uint8_t data_size, uint16_t _ext,
Args... args) :
%(base_class)s(mach_inst, "%(mnemonic)s", inst_mnem, set_flags,
%(op_class)s, { args... }, data_size, _ext)
{
%(set_reg_idx_arr)s;
%(constructor)s;
%(cond_control_flag_init)s;
}
Fault execute(ExecContext *, Trace::InstRecord *) const override;
};
}};
def template MicroRegOpBranchDeclare {{
class %(class_name)s : public %(base_class)s
{
private:
%(reg_idx_arr_decl)s;
public:
template <typename ...Args>
%(class_name)s(ExtMachInst mach_inst, const char *inst_mnem,
uint64_t set_flags, uint8_t data_size, uint16_t _ext,
Args... args) :
%(base_class)s(mach_inst, "%(mnemonic)s", inst_mnem, set_flags,
%(op_class)s, { args... }, data_size, _ext)
{
%(set_reg_idx_arr)s;
%(constructor)s;
%(cond_control_flag_init)s;
}
Fault execute(ExecContext *, Trace::InstRecord *) const override;
std::unique_ptr<PCStateBase> branchTarget(
const PCStateBase &branchPC) const override;
/// Explicitly import the otherwise hidden branchTarget
using StaticInst::branchTarget;
};
}};
def template MicroRegOpBranchTarget {{
std::unique_ptr<PCStateBase>
%(class_name)s::branchTarget(const PCStateBase &branch_pc) const
{
PCStateBase *pcs = branch_pc.clone();
DPRINTF(X86, "branchTarget PC info: %s, Immediate (imm8): %lx\n",
*pcs, (int8_t)imm8);
auto &xpc = pcs->as<PCState>();
xpc.npc(xpc.npc() + (int8_t)imm8);
xpc.uEnd();
return std::unique_ptr<PCStateBase>{pcs};
}
}};
output header {{
enum SegmentSelectorCheck
{
SegNoCheck,
SegCSCheck,
SegCallGateCheck,
SegIntGateCheck,
SegSoftIntGateCheck,
SegSSCheck,
SegIretCheck,
SegIntCSCheck,
SegTRCheck,
SegTSSCheck,
SegInGDTCheck,
SegLDTCheck
};
enum LongModeDescriptorType
{
LDT64 = 2,
AvailableTSS64 = 9,
BusyTSS64 = 0xb,
CallGate64 = 0xc,
IntGate64 = 0xe,
TrapGate64 = 0xf
};
}};
let {{
# Make these empty strings so that concatenating onto
# them will always work.
header_output = ""
decoder_output = ""
exec_output = ""
branchTemplates = (
MicroRegOpBranchDeclare,
MicroRegOpBranchTarget,
MicroRegOpExecute)
normalTemplates = (
MicroRegOpDeclare,
None,
MicroRegOpExecute)
class RegOpMeta(type):
def buildCppClasses(self, name, Name, suffix, code, big_code, \
flag_code, cond_check, else_code, cond_control_flag_init,
op_class, operand_types):
# Globals to stick the output in
global header_output
global decoder_output
global exec_output
# Stick all the code together so it can be searched at once
allCode = "|".join((code, flag_code, cond_check, else_code,
cond_control_flag_init))
allBigCode = "|".join((big_code, flag_code, cond_check, else_code,
cond_control_flag_init))
# If op2 is used anywhere, make register and immediate versions
# of this code.
matcher = re.compile(
r"(?<!\w)(?P<prefix>s?)op2(?P<typeQual>_[^\W_]+)?")
match = matcher.search(allCode + allBigCode)
imm_operand_types = list([op if not op.isDual() else op.ImmType for
op in operand_types])
operand_types = list([op if not op.isDual() else op.RegType for
op in operand_types])
if match:
typeQual = ""
if match.group("typeQual"):
typeQual = match.group("typeQual")
src2_name = "%sPSrcReg2%s" % (match.group("prefix").upper(),
typeQual)
self.buildCppClasses(name, Name, suffix,
matcher.sub(src2_name, code),
matcher.sub(src2_name, big_code),
matcher.sub(src2_name, flag_code),
matcher.sub(src2_name, cond_check),
matcher.sub(src2_name, else_code),
matcher.sub(src2_name, cond_control_flag_init),
op_class, operand_types)
imm_name = '(int8_t)imm8' if match.group("prefix") else 'imm8'
self.buildCppClasses(name + "i", Name, suffix + "Imm",
matcher.sub(imm_name, code),
matcher.sub(imm_name, big_code),
matcher.sub(imm_name, flag_code),
matcher.sub(imm_name, cond_check),
matcher.sub(imm_name, else_code),
matcher.sub(imm_name, cond_control_flag_init),
op_class, imm_operand_types)
return
# If there's something optional to do with flags, generate
# a version without it and fix up this version to use it.
if flag_code != "" or cond_check != "true":
self.buildCppClasses(name, Name, suffix,
code, big_code, "", "true", else_code,
"flags[IsUncondControl] = flags[IsControl];", op_class,
operand_types)
suffix = "Flags" + suffix
cxx_classes = list([op.cxx_class() for op in operand_types])
base = "X86ISA::RegOpT<" + ', '.join(cxx_classes) + '>'
if re.search('imm8', allCode) and re.search('NRIP', allCode):
templates = branchTemplates
else:
templates = normalTemplates
# Get everything ready for the substitution
iops = [InstObjParams(name, Name + suffix, base,
{"code" : code,
"flag_code" : flag_code,
"cond_check" : cond_check,
"else_code" : else_code,
"cond_control_flag_init" : cond_control_flag_init,
"op_class" : op_class})]
if big_code != "":
iops += [InstObjParams(name, Name + suffix + "Big", base,
{"code" : big_code,
"flag_code" : flag_code,
"cond_check" : cond_check,
"else_code" : else_code,
"cond_control_flag_init" : cond_control_flag_init,
"op_class" : op_class})]
# Generate the actual code (finally!)
for iop in iops:
header_output += templates[0].subst(iop)
if templates[1]:
decoder_output += templates[1].subst(iop)
exec_output += templates[2].subst(iop)
def __new__(mcls, Name, bases, dict):
abstract = False
name = Name.lower()
if "abstract" in dict:
abstract = dict['abstract']
del dict['abstract']
cls = super().__new__(mcls, Name, bases, dict)
if abstract:
return cls
cls.className = Name
cls.base_mnemonic = name
code = cls.code
big_code = cls.big_code
flag_code = cls.flag_code
cond_check = cls.cond_check
else_code = cls.else_code
cond_control_flag_init = cls.cond_control_flag_init
op_class = cls.op_class
operand_types = cls.operand_types
# Set up the C++ classes
mcls.buildCppClasses(cls, name, Name, "", code, big_code,
flag_code, cond_check, else_code,
cond_control_flag_init, op_class, operand_types)
# Hook into the microassembler dict
global microopClasses
microopClasses[name] = cls
allCode = "|".join((code, flag_code, cond_check, else_code,
cond_control_flag_init))
# If op2 is used anywhere, make register and immediate versions
# of this code.
matcher = re.compile(r"op2(?P<typeQual>_[^\W_]+)?")
if matcher.search(allCode):
microopClasses[name + 'i'] = cls
return cls
class RegOp(X86Microop, metaclass=RegOpMeta):
# This class itself doesn't act as a microop
abstract = True
# Default template parameter values
big_code = ""
flag_code = ""
cond_check = "true"
else_code = ";"
cond_control_flag_init = ""
op_class = "IntAluOp"
def __init__(self, *ops, flags=None, dataSize="env.dataSize"):
self.ops = list(map(str, ops))
self.flags = flags
self.dataSize = dataSize
if flags is None:
self.ext = 0
else:
if not isinstance(flags, (list, tuple)):
raise Exception("flags must be a list or tuple of flags")
self.ext = " | ".join(flags)
self.className += "Flags"
def getAllocator(self, microFlags):
is_imm = (self.mnemonic == self.base_mnemonic + 'i')
def resolve_dual(t):
if t.isDual():
if is_imm:
return t.ImmType
else:
return t.RegType
else:
return t
operand_types = map(resolve_dual, self.operand_types)
op_iter = iter(self.ops)
ops = list([Type(op_iter).ctor_args() for Type in operand_types])
op_args = ', '.join(ops)
if self.big_code != "":
className = self.className
if is_imm:
className += "Imm"
allocString = '''
(%(dataSize)s >= 4) ?
(StaticInstPtr)(new %(class_name)sBig(machInst,
macrocodeBlock, %(flags)s, %(dataSize)s, %(ext)s,
%(op_args)s)) :
(StaticInstPtr)(new %(class_name)s(machInst,
macrocodeBlock, %(flags)s, %(dataSize)s, %(ext)s,
%(op_args)s))
'''
allocator = allocString % {
"class_name" : className,
"flags" : self.microFlagsText(microFlags),
"op_args" : op_args,
"dataSize" : self.dataSize,
"ext" : self.ext}
return allocator
else:
className = self.className
if is_imm:
className += "Imm"
allocator = '''new %(class_name)s(machInst, macrocodeBlock,
%(flags)s, %(dataSize)s, %(ext)s, %(op_args)s)''' % {
"class_name" : className,
"flags" : self.microFlagsText(microFlags),
"op_args" : op_args,
"dataSize" : self.dataSize,
"ext" : self.ext}
return allocator
class BasicRegOp(RegOp):
operand_types = (FoldedDestOp, FoldedSrc1Op, Op2)
abstract = True
def __init__(self, dest, src1, src2, flags=None,
dataSize="env.dataSize"):
super().__init__(dest, src1, src2, flags=flags, dataSize=dataSize)
class LogicRegOp(BasicRegOp):
abstract = True
flag_code = '''
//Don't have genFlags handle the OF or CF bits
uint64_t mask = CFBit | ECFBit | OFBit;
uint64_t newFlags = genFlags(PredccFlagBits | PreddfBit |
PredezfBit, ext & ~mask, result, PSrcReg1, op2);
PredezfBit = newFlags & EZFBit;
PreddfBit = newFlags & DFBit;
PredccFlagBits = newFlags & ccFlagMask;
//If a logic microop wants to set these, it wants to set them to 0.
PredcfofBits = PredcfofBits & ~((CFBit | OFBit) & ext);
PredecfBit = PredecfBit & ~(ECFBit & ext);
'''
class FlagRegOp(BasicRegOp):
abstract = True
flag_code = '''
uint64_t newFlags = genFlags(PredccFlagBits | PredcfofBits |
PreddfBit | PredecfBit | PredezfBit,
ext, result, PSrcReg1, op2);
PredcfofBits = newFlags & cfofMask;
PredecfBit = newFlags & ECFBit;
PredezfBit = newFlags & EZFBit;
PreddfBit = newFlags & DFBit;
PredccFlagBits = newFlags & ccFlagMask;
'''
class SubRegOp(BasicRegOp):
abstract = True
flag_code = '''
uint64_t newFlags = genFlags(PredccFlagBits | PredcfofBits |
PreddfBit | PredecfBit | PredezfBit,
ext, result, PSrcReg1, ~op2, true);
PredcfofBits = newFlags & cfofMask;
PredecfBit = newFlags & ECFBit;
PredezfBit = newFlags & EZFBit;
PreddfBit = newFlags & DFBit;
PredccFlagBits = newFlags & ccFlagMask;
'''
class CondRegOp(RegOp):
abstract = True
cond_check = "checkCondition(ccFlagBits | cfofBits | dfBit | ecfBit | \
ezfBit, ext)"
cond_control_flag_init = "flags[IsCondControl] = flags[IsControl];"
class RdRegOp(RegOp):
operand_types = (FoldedDestOp, FoldedSrc1Op)
abstract = True
def __init__(self, dest, src1=None, dataSize="env.dataSize"):
if not src1:
src1 = dest
super().__init__(dest, src1, dataSize=dataSize)
class WrRegOp(RegOp):
operand_types = (FoldedSrc1Op, Op2)
abstract = True
def __init__(self, src1, src2, flags=None, dataSize="env.dataSize"):
super().__init__(src1, src2, flags=flags, dataSize=dataSize)
class Add(FlagRegOp):
code = '''
result = PSrcReg1 + op2;
DestReg = merge(DestReg, dest, result, dataSize);
'''
big_code = 'DestReg = result = (PSrcReg1 + op2) & mask(dataSize * 8);'
class Or(LogicRegOp):
code = '''
result = PSrcReg1 | op2;
DestReg = merge(DestReg, dest, result, dataSize);
'''
big_code = 'DestReg = result = (PSrcReg1 | op2) & mask(dataSize * 8);'
class Adc(FlagRegOp):
code = '''
CCFlagBits flags = cfofBits;
result = PSrcReg1 + op2 + flags.cf;
DestReg = merge(DestReg, dest, result, dataSize);
'''
big_code = '''
CCFlagBits flags = cfofBits;
DestReg = result =
(PSrcReg1 + op2 + flags.cf) & mask(dataSize * 8);
'''
class Sbb(SubRegOp):
code = '''
CCFlagBits flags = cfofBits;
result = PSrcReg1 - op2 - flags.cf;
DestReg = merge(DestReg, dest, result, dataSize);
'''
big_code = '''
CCFlagBits flags = cfofBits;
DestReg = result =
(PSrcReg1 - op2 - flags.cf) & mask(dataSize * 8);
'''
class And(LogicRegOp):
code = '''
result = PSrcReg1 & op2;
DestReg = merge(DestReg, dest, result, dataSize)
'''
big_code = 'DestReg = result = (PSrcReg1 & op2) & mask(dataSize * 8)'
class Sub(SubRegOp):
code = '''
result = PSrcReg1 - op2;
DestReg = merge(DestReg, dest, result, dataSize)
'''
big_code = 'DestReg = result = (PSrcReg1 - op2) & mask(dataSize * 8)'
class Xor(LogicRegOp):
code = '''
result = PSrcReg1 ^ op2;
DestReg = merge(DestReg, dest, result, dataSize)
'''
big_code = 'DestReg = result = (PSrcReg1 ^ op2) & mask(dataSize * 8)'
class Mul1s(WrRegOp):
op_class = 'IntMultOp'
code = '''
int64_t hi, low;
switch (dataSize) {
case 8:
std::tie(hi, low) = mulSigned<int64_t>(PSrcReg1, op2);
break;
case 4:
std::tie(hi, low) = mulSigned<int32_t>(PSrcReg1, op2);
break;
case 2:
std::tie(hi, low) = mulSigned<int16_t>(PSrcReg1, op2);
break;
case 1:
std::tie(hi, low) = mulSigned<int8_t>(PSrcReg1, op2);
break;
default:
panic("Unrecognized data size %d.", dataSize);
}
ProdHi = hi;
ProdLow = low;
'''
flag_code = '''
if ((-ProdHi & mask(dataSize * 8)) !=
bits(ProdLow, dataSize * 8 - 1)) {
PredcfofBits = PredcfofBits | (ext & (CFBit | OFBit));
PredecfBit = PredecfBit | (ext & ECFBit);
} else {
PredcfofBits = PredcfofBits & ~(ext & (CFBit | OFBit));
PredecfBit = PredecfBit & ~(ext & ECFBit);
}
'''
class Mul1u(WrRegOp):
op_class = 'IntMultOp'
code = '''
uint64_t hi, low;
switch (dataSize) {
case 8:
std::tie(hi, low) = mulUnsigned<uint64_t>(PSrcReg1, op2);
break;
case 4:
std::tie(hi, low) = mulUnsigned<uint32_t>(PSrcReg1, op2);
break;
case 2:
std::tie(hi, low) = mulUnsigned<uint16_t>(PSrcReg1, op2);
break;
case 1:
std::tie(hi, low) = mulUnsigned<uint8_t>(PSrcReg1, op2);
break;
default:
panic("Unrecognized data size %d.", dataSize);
}
ProdHi = hi;
ProdLow = low;
'''
flag_code = '''
if (ProdHi) {
PredcfofBits = PredcfofBits | (ext & (CFBit | OFBit));
PredecfBit = PredecfBit | (ext & ECFBit);
} else {
PredcfofBits = PredcfofBits & ~(ext & (CFBit | OFBit));
PredecfBit = PredecfBit & ~(ext & ECFBit);
}
'''
class Mulel(RdRegOp):
code = 'DestReg = merge(SrcReg1, dest, ProdLow, dataSize);'
big_code = 'DestReg = ProdLow & mask(dataSize * 8);'
class Muleh(RdRegOp):
def __init__(self, dest, src1=None, flags=None,
dataSize="env.dataSize"):
if not src1:
src1 = dest
super().__init__(dest, src1, dataSize=dataSize)
code = 'DestReg = merge(SrcReg1, dest, ProdHi, dataSize);'
big_code = 'DestReg = ProdHi & mask(dataSize * 8);'
# One or two bit divide
class Div1(WrRegOp):
op_class = 'IntDivOp'
code = '''
//These are temporaries so that modifying them later won't make
//the ISA parser think they're also sources.
uint64_t quotient = 0;
uint64_t remainder = PSrcReg1;
//Similarly, this is a temporary so changing it doesn't make it
//a source.
uint64_t divisor = op2;
//This is a temporary just for consistency and clarity.
uint64_t dividend = remainder;
//Do the division.
if (divisor == 0) {
fault = std::make_shared<DivideError>();
} else {
divideStep(dividend, divisor, quotient, remainder);
//Record the final results.
Remainder = remainder;
Quotient = quotient;
Divisor = divisor;
}
'''
# Step divide
class Div2(BasicRegOp):
op_class = 'IntDivOp'
divCode = '''
uint64_t dividend = Remainder;
uint64_t divisor = Divisor;
uint64_t quotient = Quotient;
uint64_t remainder = dividend;
int remaining = op2;
//If we overshot, do nothing. This lets us unrool division loops a
//little.
if (divisor == 0) {
fault = std::make_shared<DivideError>();
} else if (remaining) {
if (divisor & (1ULL << 63)) {
while (remaining && !(dividend & (1ULL << 63))) {
dividend = (dividend << 1) |
bits(SrcReg1, remaining - 1);
quotient <<= 1;
remaining--;
}
if (dividend & (1ULL << 63)) {
bool highBit = false;
if (dividend < divisor && remaining) {
highBit = true;
dividend = (dividend << 1) |
bits(SrcReg1, remaining - 1);
quotient <<= 1;
remaining--;
}
if (highBit || divisor <= dividend) {
quotient++;
dividend -= divisor;
}
}
remainder = dividend;
} else {
//Shift in bits from the low order portion of the dividend
while (dividend < divisor && remaining) {
dividend = (dividend << 1) |
bits(SrcReg1, remaining - 1);
quotient <<= 1;
remaining--;
}
remainder = dividend;
//Do the division.
divideStep(dividend, divisor, quotient, remainder);
}
}
//Keep track of how many bits there are still to pull in.
%s
//Record the final results
Remainder = remainder;
Quotient = quotient;
'''
code = divCode % "DestReg = merge(DestReg, dest, remaining, dataSize);"
big_code = divCode % "DestReg = remaining & mask(dataSize * 8);"
flag_code = '''
if (remaining == 0)
PredezfBit = PredezfBit | (ext & EZFBit);
else
PredezfBit = PredezfBit & ~(ext & EZFBit);
'''
class Divq(RdRegOp):
code = 'DestReg = merge(SrcReg1, dest, Quotient, dataSize);'
big_code = 'DestReg = Quotient & mask(dataSize * 8);'
class Divr(RdRegOp):
code = 'DestReg = merge(SrcReg1, dest, Remainder, dataSize);'
big_code = 'DestReg = Remainder & mask(dataSize * 8);'
class Mov(BasicRegOp, CondRegOp):
code = 'DestReg = merge(SrcReg1, dest, op2, dataSize)'
else_code = 'DestReg = DestReg;'
# Shift instructions
class Sll(BasicRegOp):
code = '''
uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
DestReg = merge(DestReg, dest, PSrcReg1 << shiftAmt, dataSize);
'''
big_code = '''
uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
DestReg = (PSrcReg1 << shiftAmt) & mask(dataSize * 8);
'''
flag_code = '''
// If the shift amount is zero, no flags should be modified.
if (shiftAmt) {
//Zero out any flags we might modify. This way we only have to
//worry about setting them.
PredcfofBits = PredcfofBits & ~(ext & (CFBit | OFBit));
PredecfBit = PredecfBit & ~(ext & ECFBit);
int CFBits = 0;
//Figure out if we -would- set the CF bits if requested.
if (shiftAmt <= dataSize * 8 &&
bits(SrcReg1, dataSize * 8 - shiftAmt)) {
CFBits = 1;
}
//If some combination of the CF bits need to be set, set them.
if ((ext & (CFBit | ECFBit)) && CFBits) {
PredcfofBits = PredcfofBits | (ext & CFBit);
PredecfBit = PredecfBit | (ext & ECFBit);
}
//Figure out what the OF bit should be.
if ((ext & OFBit) &&
(CFBits ^ bits(DestReg, dataSize * 8 - 1))) {
PredcfofBits = PredcfofBits | OFBit;
}
//Use the regular mechanisms to calculate the other flags.
uint64_t newFlags = genFlags(PredccFlagBits | PreddfBit |
PredezfBit, ext & ~(CFBit | ECFBit | OFBit),
DestReg, PSrcReg1, op2);
PredezfBit = newFlags & EZFBit;
PreddfBit = newFlags & DFBit;
PredccFlagBits = newFlags & ccFlagMask;
}
'''
class Srl(BasicRegOp):
# Because what happens to the bits shift -in- on a right shift
# is not defined in the C/C++ standard, we have to mask them out
# to be sure they're zero.
code = '''
uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
uint64_t logicalMask = mask(dataSize * 8 - shiftAmt);
DestReg = merge(DestReg, dest,
(PSrcReg1 >> shiftAmt) & logicalMask, dataSize);
'''
big_code = '''
uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
uint64_t logicalMask = mask(dataSize * 8 - shiftAmt);
DestReg = (PSrcReg1 >> shiftAmt) & logicalMask;
'''
flag_code = '''
// If the shift amount is zero, no flags should be modified.
if (shiftAmt) {
//Zero out any flags we might modify. This way we only have to
//worry about setting them.
PredcfofBits = PredcfofBits & ~(ext & (CFBit | OFBit));
PredecfBit = PredecfBit & ~(ext & ECFBit);
//If some combination of the CF bits need to be set, set them.
if ((ext & (CFBit | ECFBit)) &&
shiftAmt <= dataSize * 8 &&
bits(SrcReg1, shiftAmt - 1)) {
PredcfofBits = PredcfofBits | (ext & CFBit);
PredecfBit = PredecfBit | (ext & ECFBit);
}
//Figure out what the OF bit should be.
if ((ext & OFBit) && bits(SrcReg1, dataSize * 8 - 1))
PredcfofBits = PredcfofBits | OFBit;
//Use the regular mechanisms to calculate the other flags.
uint64_t newFlags = genFlags(PredccFlagBits | PreddfBit |
PredezfBit, ext & ~(CFBit | ECFBit | OFBit),
DestReg, PSrcReg1, op2);
PredezfBit = newFlags & EZFBit;
PreddfBit = newFlags & DFBit;
PredccFlagBits = newFlags & ccFlagMask;
}
'''
class Sra(BasicRegOp):
# Because what happens to the bits shift -in- on a right shift
# is not defined in the C/C++ standard, we have to sign extend
# them manually to be sure.
code = '''
uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
uint64_t arithMask = (shiftAmt == 0) ? 0 :
-bits(PSrcReg1, dataSize * 8 - 1) << (dataSize * 8 - shiftAmt);
DestReg = merge(DestReg, dest,
(PSrcReg1 >> shiftAmt) | arithMask, dataSize);
'''
big_code = '''
uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
uint64_t arithMask = (shiftAmt == 0) ? 0 :
-bits(PSrcReg1, dataSize * 8 - 1) << (dataSize * 8 - shiftAmt);
DestReg =
((PSrcReg1 >> shiftAmt) | arithMask) & mask(dataSize * 8);
'''
flag_code = '''
// If the shift amount is zero, no flags should be modified.
if (shiftAmt) {
//Zero out any flags we might modify. This way we only have to
//worry about setting them.
PredcfofBits = PredcfofBits & ~(ext & (CFBit | OFBit));
PredecfBit = PredecfBit & ~(ext & ECFBit);
//If some combination of the CF bits need to be set, set them.
uint8_t effectiveShift =
(shiftAmt <= dataSize * 8) ? shiftAmt : (dataSize * 8);
if ((ext & (CFBit | ECFBit)) &&
bits(SrcReg1, effectiveShift - 1)) {
PredcfofBits = PredcfofBits | (ext & CFBit);
PredecfBit = PredecfBit | (ext & ECFBit);
}
//Use the regular mechanisms to calculate the other flags.
uint64_t newFlags = genFlags(PredccFlagBits | PreddfBit |
PredezfBit, ext & ~(CFBit | ECFBit | OFBit),
DestReg, PSrcReg1, op2);
PredezfBit = newFlags & EZFBit;
PreddfBit = newFlags & DFBit;
PredccFlagBits = newFlags & ccFlagMask;
}
'''
class Ror(BasicRegOp):
code = '''
uint8_t shiftAmt =
(op2 & ((dataSize == 8) ? mask(6) : mask(5)));
uint8_t realShiftAmt = shiftAmt % (dataSize * 8);
if (realShiftAmt) {
uint64_t top = PSrcReg1 << (dataSize * 8 - realShiftAmt);
uint64_t bottom = bits(PSrcReg1, dataSize * 8, realShiftAmt);
DestReg = merge(DestReg, dest, top | bottom, dataSize);
} else
DestReg = merge(DestReg, dest, DestReg, dataSize);
'''
flag_code = '''
// If the shift amount is zero, no flags should be modified.
if (shiftAmt) {
//Zero out any flags we might modify. This way we only have to
//worry about setting them.
PredcfofBits = PredcfofBits & ~(ext & (CFBit | OFBit));
PredecfBit = PredecfBit & ~(ext & ECFBit);
//Find the most and second most significant bits of the result.
int msb = bits(DestReg, dataSize * 8 - 1);
int smsb = bits(DestReg, dataSize * 8 - 2);
//If some combination of the CF bits need to be set, set them.
if ((ext & (CFBit | ECFBit)) && msb) {
PredcfofBits = PredcfofBits | (ext & CFBit);
PredecfBit = PredecfBit | (ext & ECFBit);
}
//Figure out what the OF bit should be.
if ((ext & OFBit) && (msb ^ smsb))
PredcfofBits = PredcfofBits | OFBit;
//Use the regular mechanisms to calculate the other flags.
uint64_t newFlags = genFlags(PredccFlagBits | PreddfBit |
PredezfBit, ext & ~(CFBit | ECFBit | OFBit),
DestReg, PSrcReg1, op2);
PredezfBit = newFlags & EZFBit;
PreddfBit = newFlags & DFBit;
PredccFlagBits = newFlags & ccFlagMask;
}
'''
class Rcr(BasicRegOp):
code = '''
uint8_t shiftAmt =
(op2 & ((dataSize == 8) ? mask(6) : mask(5)));
uint8_t realShiftAmt = shiftAmt % (dataSize * 8 + 1);
if (realShiftAmt) {
CCFlagBits flags = cfofBits;
uint64_t top = flags.cf << (dataSize * 8 - realShiftAmt);
if (realShiftAmt > 1)
top |= PSrcReg1 << (dataSize * 8 - realShiftAmt + 1);
uint64_t bottom =
bits(PSrcReg1, dataSize * 8 - 1, realShiftAmt);
DestReg = merge(DestReg, dest, top | bottom, dataSize);
} else
DestReg = merge(DestReg, dest, DestReg, dataSize);
'''
flag_code = '''
// If the shift amount is zero, no flags should be modified.
if (shiftAmt) {
int origCFBit = (cfofBits & CFBit) ? 1 : 0;
//Zero out any flags we might modify. This way we only have to
//worry about setting them.
PredcfofBits = PredcfofBits & ~(ext & (CFBit | OFBit));
PredecfBit = PredecfBit & ~(ext & ECFBit);
//Figure out what the OF bit should be.
if ((ext & OFBit) && (origCFBit ^
bits(SrcReg1, dataSize * 8 - 1))) {
PredcfofBits = PredcfofBits | OFBit;
}
//If some combination of the CF bits need to be set, set them.
if ((ext & (CFBit | ECFBit)) &&
(realShiftAmt == 0) ? origCFBit :
bits(SrcReg1, realShiftAmt - 1)) {
PredcfofBits = PredcfofBits | (ext & CFBit);
PredecfBit = PredecfBit | (ext & ECFBit);
}
//Use the regular mechanisms to calculate the other flags.
uint64_t newFlags = genFlags(PredccFlagBits | PreddfBit |
PredezfBit, ext & ~(CFBit | ECFBit | OFBit),
DestReg, PSrcReg1, op2);
PredezfBit = newFlags & EZFBit;
PreddfBit = newFlags & DFBit;
PredccFlagBits = newFlags & ccFlagMask;
}
'''
class Rol(BasicRegOp):
code = '''
uint8_t shiftAmt =
(op2 & ((dataSize == 8) ? mask(6) : mask(5)));
uint8_t realShiftAmt = shiftAmt % (dataSize * 8);
if (realShiftAmt) {
uint64_t top = PSrcReg1 << realShiftAmt;
uint64_t bottom = bits(PSrcReg1, dataSize * 8 - 1,
dataSize * 8 - realShiftAmt);
DestReg = merge(DestReg, dest, top | bottom, dataSize);
} else
DestReg = merge(DestReg, dest, DestReg, dataSize);
'''
flag_code = '''
// If the shift amount is zero, no flags should be modified.
if (shiftAmt) {
//Zero out any flags we might modify. This way we only have to
//worry about setting them.
PredcfofBits = PredcfofBits & ~(ext & (CFBit | OFBit));
PredecfBit = PredecfBit & ~(ext & ECFBit);
//The CF bits, if set, would be set to the lsb of the result.
int lsb = DestReg & 0x1;
int msb = bits(DestReg, dataSize * 8 - 1);
//If some combination of the CF bits need to be set, set them.
if ((ext & (CFBit | ECFBit)) && lsb) {
PredcfofBits = PredcfofBits | (ext & CFBit);
PredecfBit = PredecfBit | (ext & ECFBit);
}
//Figure out what the OF bit should be.
if ((ext & OFBit) && (msb ^ lsb))
PredcfofBits = PredcfofBits | OFBit;
//Use the regular mechanisms to calculate the other flags.
uint64_t newFlags = genFlags(PredccFlagBits | PreddfBit |
PredezfBit, ext & ~(CFBit | ECFBit | OFBit),
DestReg, PSrcReg1, op2);
PredezfBit = newFlags & EZFBit;
PreddfBit = newFlags & DFBit;
PredccFlagBits = newFlags & ccFlagMask;
}
'''
class Rcl(BasicRegOp):
code = '''
uint8_t shiftAmt =
(op2 & ((dataSize == 8) ? mask(6) : mask(5)));
uint8_t realShiftAmt = shiftAmt % (dataSize * 8 + 1);
if (realShiftAmt) {
CCFlagBits flags = cfofBits;
uint64_t top = PSrcReg1 << realShiftAmt;
uint64_t bottom = flags.cf << (realShiftAmt - 1);
if(realShiftAmt > 1) {
bottom |= bits(PSrcReg1, dataSize * 8 - 1,
dataSize * 8 - realShiftAmt + 1);
}
DestReg = merge(DestReg, dest, top | bottom, dataSize);
} else
DestReg = merge(DestReg, dest, DestReg, dataSize);
'''
flag_code = '''
// If the shift amount is zero, no flags should be modified.
if (shiftAmt) {
int origCFBit = (cfofBits & CFBit) ? 1 : 0;
//Zero out any flags we might modify. This way we only have to
//worry about setting them.
PredcfofBits = PredcfofBits & ~(ext & (CFBit | OFBit));
PredecfBit = PredecfBit & ~(ext & ECFBit);
int msb = bits(DestReg, dataSize * 8 - 1);
int CFBits = bits(SrcReg1, dataSize * 8 - realShiftAmt);
//If some combination of the CF bits need to be set, set them.
if ((ext & (CFBit | ECFBit)) &&
(realShiftAmt == 0) ? origCFBit : CFBits) {
PredcfofBits = PredcfofBits | (ext & CFBit);
PredecfBit = PredecfBit | (ext & ECFBit);
}
//Figure out what the OF bit should be.
if ((ext & OFBit) && (msb ^ CFBits))
PredcfofBits = PredcfofBits | OFBit;
//Use the regular mechanisms to calculate the other flags.
uint64_t newFlags = genFlags(PredccFlagBits | PreddfBit |
PredezfBit, ext & ~(CFBit | ECFBit | OFBit),
DestReg, PSrcReg1, op2);
PredezfBit = newFlags & EZFBit;
PreddfBit = newFlags & DFBit;
PredccFlagBits = newFlags & ccFlagMask;
}
'''
class Sld(BasicRegOp):
sldCode = '''
uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
uint8_t dataBits = dataSize * 8;
uint8_t realShiftAmt = shiftAmt %% (2 * dataBits);
uint64_t result;
if (realShiftAmt == 0) {
result = PSrcReg1;
} else if (realShiftAmt < dataBits) {
result = (PSrcReg1 << realShiftAmt) |
(DoubleBits >> (dataBits - realShiftAmt));
} else {
result = (DoubleBits << (realShiftAmt - dataBits)) |
(PSrcReg1 >> (2 * dataBits - realShiftAmt));
}
%s
'''
code = sldCode % "DestReg = merge(DestReg, dest, result, dataSize);"
big_code = sldCode % "DestReg = result & mask(dataSize * 8);"
flag_code = '''
// If the shift amount is zero, no flags should be modified.
if (shiftAmt) {
//Zero out any flags we might modify. This way we only have to
//worry about setting them.
PredcfofBits = PredcfofBits & ~(ext & (CFBit | OFBit));
PredecfBit = PredecfBit & ~(ext & ECFBit);
int CFBits = 0;
//Figure out if we -would- set the CF bits if requested.
if ((realShiftAmt == 0 &&
bits(DoubleBits, 0)) ||
(realShiftAmt <= dataBits &&
bits(SrcReg1, dataBits - realShiftAmt)) ||
(realShiftAmt > dataBits &&
bits(DoubleBits, 2 * dataBits - realShiftAmt))) {
CFBits = 1;
}
//If some combination of the CF bits need to be set, set them.
if ((ext & (CFBit | ECFBit)) && CFBits) {
PredcfofBits = PredcfofBits | (ext & CFBit);
PredecfBit = PredecfBit | (ext & ECFBit);
}
//Figure out what the OF bit should be.
if ((ext & OFBit) && (bits(SrcReg1, dataBits - 1) ^
bits(result, dataBits - 1)))
PredcfofBits = PredcfofBits | OFBit;
//Use the regular mechanisms to calculate the other flags.
uint64_t newFlags = genFlags(PredccFlagBits | PreddfBit |
PredezfBit, ext & ~(CFBit | ECFBit | OFBit),
DestReg, PSrcReg1, op2);
PredezfBit = newFlags & EZFBit;
PreddfBit = newFlags & DFBit;
PredccFlagBits = newFlags & ccFlagMask;
}
'''
class Srd(BasicRegOp):
srdCode = '''
uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
uint8_t dataBits = dataSize * 8;
uint8_t realShiftAmt = shiftAmt %% (2 * dataBits);
uint64_t result;
if (realShiftAmt == 0) {
result = PSrcReg1;
} else if (realShiftAmt < dataBits) {
// Because what happens to the bits shift -in- on a right
// shift is not defined in the C/C++ standard, we have to
// mask them out to be sure they're zero.
uint64_t logicalMask = mask(dataBits - realShiftAmt);
result = ((PSrcReg1 >> realShiftAmt) & logicalMask) |
(DoubleBits << (dataBits - realShiftAmt));
} else {
uint64_t logicalMask = mask(2 * dataBits - realShiftAmt);
result = ((DoubleBits >> (realShiftAmt - dataBits)) &
logicalMask) |
(PSrcReg1 << (2 * dataBits - realShiftAmt));
}
%s
'''
code = srdCode % "DestReg = merge(DestReg, dest, result, dataSize);"
big_code = srdCode % "DestReg = result & mask(dataSize * 8);"
flag_code = '''
// If the shift amount is zero, no flags should be modified.
if (shiftAmt) {
//Zero out any flags we might modify. This way we only have to
//worry about setting them.
PredcfofBits = PredcfofBits & ~(ext & (CFBit | OFBit));
PredecfBit = PredecfBit & ~(ext & ECFBit);
int CFBits = 0;
//If some combination of the CF bits need to be set, set them.
if ((realShiftAmt == 0 &&
bits(DoubleBits, dataBits - 1)) ||
(realShiftAmt <= dataBits &&
bits(SrcReg1, realShiftAmt - 1)) ||
(realShiftAmt > dataBits &&
bits(DoubleBits, realShiftAmt - dataBits - 1))) {
CFBits = 1;
}
//If some combination of the CF bits need to be set, set them.
if ((ext & (CFBit | ECFBit)) && CFBits) {
PredcfofBits = PredcfofBits | (ext & CFBit);
PredecfBit = PredecfBit | (ext & ECFBit);
}
//Figure out what the OF bit should be.
if ((ext & OFBit) && (bits(SrcReg1, dataBits - 1) ^
bits(result, dataBits - 1)))
PredcfofBits = PredcfofBits | OFBit;
//Use the regular mechanisms to calculate the other flags.
uint64_t newFlags = genFlags(PredccFlagBits | PreddfBit |
PredezfBit, ext & ~(CFBit | ECFBit | OFBit),
DestReg, PSrcReg1, op2);
PredezfBit = newFlags & EZFBit;
PreddfBit = newFlags & DFBit;
PredccFlagBits = newFlags & ccFlagMask;
}
'''
class Mdb(WrRegOp):
code = 'DoubleBits = PSrcReg1 ^ op2;'
class Wrip(WrRegOp, CondRegOp):
code = 'NRIP = PSrcReg1 + sop2 + CSBase;'
else_code = "NRIP = NRIP;"
class Wruflags(WrRegOp):
code = '''
uint64_t newFlags = PSrcReg1 ^ op2;
cfofBits = newFlags & cfofMask;
ecfBit = newFlags & ECFBit;
ezfBit = newFlags & EZFBit;
dfBit = newFlags & DFBit;
ccFlagBits = newFlags & ccFlagMask;
'''
class Wrflags(WrRegOp):
code = '''
RegVal newFlags = PSrcReg1 ^ op2;
RegVal userFlagMask = 0xDD5;
// Get only the user flags
ccFlagBits = newFlags & ccFlagMask;
dfBit = newFlags & DFBit;
cfofBits = newFlags & cfofMask;
ecfBit = 0;
ezfBit = 0;
// Get everything else
nccFlagBits = newFlags & ~userFlagMask;
'''
class Rdip(RdRegOp):
code = 'DestReg = NRIP - CSBase;'
class Ruflags(RdRegOp):
code = 'DestReg = ccFlagBits | cfofBits | dfBit | ecfBit | ezfBit;'
class Rflags(RdRegOp):
code = '''
DestReg = ccFlagBits | cfofBits | dfBit |
ecfBit | ezfBit | nccFlagBits;
'''
class Ruflag(RegOp):
code = '''
int flag = bits(ccFlagBits | cfofBits | dfBit |
ecfBit | ezfBit, imm8);
DestReg = merge(DestReg, dest, flag, dataSize);
ezfBit = (flag == 0) ? EZFBit : 0;
'''
big_code = '''
int flag = bits(ccFlagBits | cfofBits | dfBit |
ecfBit | ezfBit, imm8);
DestReg = flag & mask(dataSize * 8);
ezfBit = (flag == 0) ? EZFBit : 0;
'''
operand_types = (FoldedDestOp, Imm8Op)
def __init__(self, dest, imm, flags=None, dataSize="env.dataSize"):
super().__init__(dest, imm, flags=flags, dataSize=dataSize)
class Rflag(RegOp):
code = '''
RegVal flagMask = 0x3F7FDD5;
RegVal flags = (nccFlagBits | ccFlagBits | cfofBits | dfBit |
ecfBit | ezfBit) & flagMask;
int flag = bits(flags, imm8);
DestReg = merge(DestReg, dest, flag, dataSize);
ezfBit = (flag == 0) ? EZFBit : 0;
'''
big_code = '''
RegVal flagMask = 0x3F7FDD5;
RegVal flags = (nccFlagBits | ccFlagBits | cfofBits | dfBit |
ecfBit | ezfBit) & flagMask;
int flag = bits(flags, imm8);
DestReg = flag & mask(dataSize * 8);
ezfBit = (flag == 0) ? EZFBit : 0;
'''
operand_types = (FoldedDestOp, Imm8Op)
def __init__(self, dest, imm, flags=None, dataSize="env.dataSize"):
super().__init__(dest, imm, flags=flags, dataSize=dataSize)
class Sext(BasicRegOp):
code = '''
RegVal val = PSrcReg1;
// Mask the bit position so that it wraps.
int bitPos = op2 & (dataSize * 8 - 1);
int sign_bit = bits(val, bitPos, bitPos);
uint64_t maskVal = mask(bitPos+1);
val = sign_bit ? (val | ~maskVal) : (val & maskVal);
DestReg = merge(DestReg, dest, val, dataSize);
'''
big_code = '''
RegVal val = PSrcReg1;
// Mask the bit position so that it wraps.
int bitPos = op2 & (dataSize * 8 - 1);
int sign_bit = bits(val, bitPos, bitPos);
uint64_t maskVal = mask(bitPos+1);
val = sign_bit ? (val | ~maskVal) : (val & maskVal);
DestReg = val & mask(dataSize * 8);
'''
flag_code = '''
if (!sign_bit) {
PredccFlagBits = PredccFlagBits & ~(ext & (ZFBit));
PredcfofBits = PredcfofBits & ~(ext & (CFBit));
PredecfBit = PredecfBit & ~(ext & ECFBit);
PredezfBit = PredezfBit & ~(ext & EZFBit);
} else {
PredccFlagBits = PredccFlagBits | (ext & (ZFBit));
PredcfofBits = PredcfofBits | (ext & (CFBit));
PredecfBit = PredecfBit | (ext & ECFBit);
PredezfBit = PredezfBit | (ext & EZFBit);
}
'''
class Zext(BasicRegOp):
code = '''
DestReg = merge(DestReg, dest, bits(PSrcReg1, op2, 0), dataSize);
'''
big_code = 'DestReg = bits(PSrcReg1, op2, 0) & mask(dataSize * 8);'
class Rddr(RegOp):
operand_types = (FoldedDestOp, DbgSrc1Op)
def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
super().__init__(dest, src1, flags=flags, dataSize=dataSize)
rdrCode = '''
CR4 cr4 = CR4Op;
DR7 dr7 = DR7Op;
if ((cr4.de == 1 && (src1 == 4 || src1 == 5)) || src1 >= 8) {
fault = std::make_shared<InvalidOpcode>();
} else if (dr7.gd) {
fault = std::make_shared<DebugException>();
} else {
%s
}
'''
code = rdrCode % "DestReg = merge(DestReg, dest, DebugSrc1, dataSize);"
big_code = rdrCode % "DestReg = DebugSrc1 & mask(dataSize * 8);"
class Wrdr(RegOp):
operand_types = (DbgDestOp, FoldedSrc1Op)
def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
super().__init__(dest, src1, flags=flags, dataSize=dataSize)
code = '''
CR4 cr4 = CR4Op;
DR7 dr7 = DR7Op;
if ((cr4.de == 1 && (dest == 4 || dest == 5)) || dest >= 8) {
fault = std::make_shared<InvalidOpcode>();
} else if ((dest == 6 || dest == 7) && bits(PSrcReg1, 63, 32) &&
machInst.mode.mode == LongMode) {
fault = std::make_shared<GeneralProtection>(0);
} else if (dr7.gd) {
fault = std::make_shared<DebugException>();
} else {
DebugDest = PSrcReg1;
}
'''
class Rdcr(RegOp):
operand_types = (FoldedDestOp, CrSrc1Op)
def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
super().__init__(dest, src1, flags=flags, dataSize=dataSize)
rdcrCode = '''
if (src1 == 1 || (src1 > 4 && src1 < 8) || (src1 > 8)) {
fault = std::make_shared<InvalidOpcode>();
} else {
%s
}
'''
code = rdcrCode % \
"DestReg = merge(DestReg, dest, ControlSrc1, dataSize);"
big_code = rdcrCode % "DestReg = ControlSrc1 & mask(dataSize * 8);"
class Wrcr(RegOp):
operand_types = (CrDestOp, FoldedSrc1Op)
def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
super().__init__(dest, src1, flags=flags, dataSize=dataSize)
code = '''
if (dest == 1 || (dest > 4 && dest < 8) || (dest > 8)) {
fault = std::make_shared<InvalidOpcode>();
} else {
RegVal newVal = PSrcReg1;
// Check for any modifications that would cause a fault.
switch(dest) {
case 0:
{
Efer efer = EferOp;
CR0 cr0 = newVal;
CR4 oldCr4 = CR4Op;
if (bits(newVal, 63, 32) ||
(!cr0.pe && cr0.pg) ||
(!cr0.cd && cr0.nw) ||
(cr0.pg && efer.lme && !oldCr4.pae))
fault = std::make_shared<GeneralProtection>(0);
}
break;
case 2:
break;
case 3:
break;
case 4:
{
CR4 cr4 = newVal;
// PAE can't be disabled in long mode.
if (bits(newVal, 63, 11) ||
(machInst.mode.mode == LongMode && !cr4.pae))
fault = std::make_shared<GeneralProtection>(0);
}
break;
case 8:
{
if (bits(newVal, 63, 4))
fault = std::make_shared<GeneralProtection>(0);
}
break;
default:
fault = std::make_shared<GenericISA::M5PanicFault>(
"Unrecognized control register %d.\\n", dest);
}
ControlDest = newVal;
}
'''
# Microops for manipulating segmentation registers
class SegOp(RegOp):
abstract = True
operand_types = (SegDestOp, FoldedSrc1Op)
def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
super().__init__(dest, src1, flags=flags, dataSize=dataSize)
class WrSegOp(SegOp):
abstract = True
operand_types = (SegDestOp, FoldedSrc1Op)
class Wrbase(WrSegOp):
code = '''
SegBaseDest = PSrcReg1;
'''
class Wrlimit(WrSegOp):
code = '''
SegLimitDest = PSrcReg1;
'''
class Wrsel(WrSegOp):
code = '''
SegSelDest = PSrcReg1;
'''
class WrAttr(WrSegOp):
code = '''
SegAttrDest = PSrcReg1;
'''
class RdSegOp(SegOp):
abstract = True
operand_types = (FoldedDestOp, SegSrc1Op)
class Rdbase(RdSegOp):
code = 'DestReg = merge(DestReg, dest, SegBaseSrc1, dataSize);'
big_code = 'DestReg = SegBaseSrc1 & mask(dataSize * 8);'
class Rdlimit(RdSegOp):
code = 'DestReg = merge(DestReg, dest, SegLimitSrc1, dataSize);'
big_code = 'DestReg = SegLimitSrc1 & mask(dataSize * 8);'
class RdAttr(RdSegOp):
code = 'DestReg = merge(DestReg, dest, SegAttrSrc1, dataSize);'
big_code = 'DestReg = SegAttrSrc1 & mask(dataSize * 8);'
class Rdsel(RdSegOp):
code = 'DestReg = merge(DestReg, dest, SegSelSrc1, dataSize);'
big_code = 'DestReg = SegSelSrc1 & mask(dataSize * 8);'
class Rdval(RegOp):
operand_types = (FoldedDestOp, MiscSrc1Op)
def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
super().__init__(dest, src1, flags=flags, dataSize=dataSize)
code = '''
DestReg = MiscRegSrc1;
'''
class Wrval(RegOp):
operand_types = (MiscDestOp, FoldedSrc1Op)
def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
super().__init__(dest, src1, flags=flags, dataSize=dataSize)
code = '''
MiscRegDest = SrcReg1;
'''
class Chks(RegOp):
operand_types = (FoldedSrc1Op, FoldedSrc2Op, Imm8Op)
def __init__(self, src1, src2, imm=0, flags=None,
dataSize="env.dataSize"):
super().__init__(src1, src2, imm, flags=flags, dataSize=dataSize)
code = '''
// The selector is in source 1 and can be at most 16 bits.
SegSelector selector = SrcReg1;
SegDescriptor desc = SrcReg2;
HandyM5Reg m5reg = M5Reg;
switch (imm8)
{
case SegNoCheck:
break;
case SegCSCheck:
// Make sure it's the right type
if (desc.s == 0 || desc.type.codeOrData != 1) {
fault = std::make_shared<GeneralProtection>(0);
} else if (m5reg.cpl != desc.dpl) {
fault = std::make_shared<GeneralProtection>(0);
}
break;
case SegCallGateCheck:
fault = std::make_shared<GenericISA::M5PanicFault>(
"CS checks for far "
"calls/jumps through call gates not implemented.\\n");
break;
case SegSoftIntGateCheck:
// Check permissions.
if (desc.dpl < m5reg.cpl) {
fault = std::make_shared<GeneralProtection>(selector);
break;
}
[[fallthrough]];
case SegIntGateCheck:
// Make sure the gate's the right type.
if ((m5reg.mode == LongMode && (desc.type & 0xe) != 0xe) ||
((desc.type & 0x6) != 0x6)) {
fault = std::make_shared<GeneralProtection>(0);
}
break;
case SegSSCheck:
if (selector.si || selector.ti) {
if (!desc.p) {
fault = std::make_shared<StackFault>(selector);
} else if (!(desc.s == 1 && desc.type.codeOrData == 0 &&
desc.type.w) ||
(desc.dpl != m5reg.cpl) ||
(selector.rpl != m5reg.cpl)) {
fault = std::make_shared<GeneralProtection>(selector);
}
} else if (m5reg.submode != SixtyFourBitMode ||
m5reg.cpl == 3) {
fault = std::make_shared<GeneralProtection>(selector);
}
break;
case SegIretCheck:
{
if ((!selector.si && !selector.ti) ||
(selector.rpl < m5reg.cpl) ||
!(desc.s == 1 && desc.type.codeOrData == 1) ||
(!desc.type.c && desc.dpl != selector.rpl) ||
(desc.type.c && desc.dpl > selector.rpl)) {
fault = std::make_shared<GeneralProtection>(selector);
} else if (!desc.p) {
fault = std::make_shared<SegmentNotPresent>(selector);
}
break;
}
case SegIntCSCheck:
if (m5reg.mode == LongMode) {
if (desc.l != 1 || desc.d != 0) {
fault = std::make_shared<GeneralProtection>(selector);
}
} else {
fault = std::make_shared<GenericISA::M5PanicFault>(
"Interrupt CS "
"checks not implemented in legacy mode.\\n");
}
break;
case SegTRCheck:
if (!selector.si || selector.ti) {
fault = std::make_shared<GeneralProtection>(selector);
}
break;
case SegTSSCheck:
if (!desc.p) {
fault = std::make_shared<SegmentNotPresent>(selector);
} else if (!(desc.type == 0x9 ||
(desc.type == 1 &&
m5reg.mode != LongMode))) {
fault = std::make_shared<GeneralProtection>(selector);
}
break;
case SegInGDTCheck:
if (selector.ti) {
fault = std::make_shared<GeneralProtection>(selector);
}
break;
case SegLDTCheck:
if (!desc.p) {
fault = std::make_shared<SegmentNotPresent>(selector);
} else if (desc.type != 0x2) {
fault = std::make_shared<GeneralProtection>(selector);
}
break;
default:
fault = std::make_shared<GenericISA::M5PanicFault>(
"Undefined segment check type.\\n");
}
'''
flag_code = '''
// Check for a NULL selector and set ZF,EZF appropriately.
PredccFlagBits = PredccFlagBits & ~(ext & ZFBit);
PredezfBit = PredezfBit & ~(ext & EZFBit);
if (!selector.si && !selector.ti) {
PredccFlagBits = PredccFlagBits | (ext & ZFBit);
PredezfBit = PredezfBit | (ext & EZFBit);
}
'''
class Wrdh(BasicRegOp):
code = '''
SegDescriptor desc = SrcReg1;
uint64_t target = bits(SrcReg2, 31, 0) << 32;
switch(desc.type) {
case LDT64:
case AvailableTSS64:
case BusyTSS64:
replaceBits(target, 31, 0, desc.base);
break;
case CallGate64:
case IntGate64:
case TrapGate64:
replaceBits(target, 15, 0, bits(desc, 15, 0));
replaceBits(target, 31, 16, bits(desc, 63, 48));
break;
default:
fault = std::make_shared<GenericISA::M5PanicFault>(
"Wrdh used with wrong descriptor type!\\n");
}
DestReg = target;
'''
class Wrtsc(WrRegOp):
code = 'TscOp = PSrcReg1;'
class Rdtsc(RdRegOp):
code = '''
DestReg = TscOp;
'''
class Rdm5reg(RdRegOp):
code = '''
DestReg = M5Reg;
'''
class Wrdl(BasicRegOp):
operand_types = (SegDestOp, FoldedSrc1Op, Op2)
code = '''
SegDescriptor desc = SrcReg1;
SegSelector selector = SrcReg2;
// This while loop is so we can use break statements in the code
// below to skip the rest of this section without a bunch of
// nesting.
while (true) {
if (selector.si || selector.ti) {
if (!desc.p) {
fault = std::make_shared<GenericISA::M5PanicFault>(
"Segment not present.\\n");
break;
}
SegAttr attr = 0;
attr.dpl = desc.dpl;
attr.unusable = 0;
attr.defaultSize = desc.d;
attr.longMode = desc.l;
attr.avl = desc.avl;
attr.granularity = desc.g;
attr.present = desc.p;
attr.system = desc.s;
attr.type = desc.type;
if (!desc.s) {
// The expand down bit happens to be set for gates.
if (desc.type.e) {
fault = std::make_shared<GenericISA::M5PanicFault>(
"Gate descriptor encountered.\\n");
break;
}
attr.readable = 1;
attr.writable = 1;
attr.expandDown = 0;
} else {
if (desc.type.codeOrData) {
attr.expandDown = 0;
attr.readable = desc.type.r;
attr.writable = 0;
} else {
attr.expandDown = desc.type.e;
attr.readable = 1;
attr.writable = desc.type.w;
}
}
SegBaseDest = desc.base;
SegLimitDest = desc.limit;
SegAttrDest = attr;
} else {
SegBaseDest = SegBaseDest;
SegLimitDest = SegLimitDest;
SegAttrDest = SegAttrDest;
}
break;
}
'''
class Wrxftw(RegOp):
operand_types = (FoldedSrc1Op,)
def __init__(self, src1, flags=None, dataSize="env.dataSize"):
super().__init__(src1, flags=None, dataSize=dataSize)
code = '''
FTW = X86ISA::convX87XTagsToTags(SrcReg1);
'''
class Rdxftw(RdRegOp):
code = '''
DestReg = X86ISA::convX87TagsToXTags(FTW);
'''
class Popcnt(BasicRegOp):
code = 'DestReg = merge(DestReg, dest, popCount(PSrcReg1), dataSize);'
flag_code = '''
ccFlagBits = ccFlagBits & ~(X86ISA::SFBit | X86ISA::AFBit |
X86ISA::ZFBit | X86ISA::PFBit);
if (findZero(dataSize * 8, SrcReg1)) {
ccFlagBits = ccFlagBits | X86ISA::ZFBit;
}
cfofBits = cfofBits & ~(X86ISA::OFBit | X86ISA::CFBit);
'''
}};