blob: 28b5619a167cb7f8c72b64fc40f1a0a8084abfa0 [file] [log] [blame]
/*
* Copyright (c) 2010-2012, 2015, 2017 ARM Limited
* Copyright (c) 2020 Barkhausen Institut
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2011 Advanced Micro Devices, Inc.
* Copyright (c) 2003-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "sim/pseudo_inst.hh"
#include <fcntl.h>
#include <unistd.h>
#include <array>
#include <cerrno>
#include <fstream>
#include <string>
#include <vector>
#include "base/debug.hh"
#include "base/output.hh"
#include "cpu/base.hh"
#include "cpu/thread_context.hh"
#include "debug/Loader.hh"
#include "debug/Quiesce.hh"
#include "debug/WorkItems.hh"
#include "dev/net/dist_iface.hh"
#include "mem/se_translating_port_proxy.hh"
#include "mem/translating_port_proxy.hh"
#include "params/BaseCPU.hh"
#include "sim/full_system.hh"
#include "sim/process.hh"
#include "sim/serialize.hh"
#include "sim/sim_events.hh"
#include "sim/sim_exit.hh"
#include "sim/stat_control.hh"
#include "sim/stats.hh"
#include "sim/system.hh"
namespace gem5
{
using namespace statistics;
GEM5_DEPRECATED_NAMESPACE(PseudoInst, pseudo_inst);
namespace pseudo_inst
{
/**
* Unique keys to retrieve various params by the initParam pseudo inst.
*
* @note Each key may be at most 16 characters (because we use
* two 64-bit registers to pass in the key to the initparam function).
*/
namespace
{
/**
* The default key (empty string)
*/
const std::string DEFAULT = "";
/**
* Unique key for "rank" param (distributed gem5 runs)
*/
const std::string DIST_RANK = "dist-rank";
/**
* Unique key for "size" param (distributed gem5 runs)
*/
const std::string DIST_SIZE = "dist-size";
} // anonymous namespace
void
arm(ThreadContext *tc)
{
DPRINTF(PseudoInst, "pseudo_inst::arm()\n");
auto *workload = tc->getSystemPtr()->workload;
if (workload)
workload->recordArm();
}
void
quiesce(ThreadContext *tc)
{
DPRINTF(PseudoInst, "pseudo_inst::quiesce()\n");
tc->quiesce();
}
void
quiesceSkip(ThreadContext *tc)
{
DPRINTF(PseudoInst, "pseudo_inst::quiesceSkip()\n");
tc->quiesceTick(tc->getCpuPtr()->nextCycle() + 1);
}
void
quiesceNs(ThreadContext *tc, uint64_t ns)
{
DPRINTF(PseudoInst, "pseudo_inst::quiesceNs(%i)\n", ns);
tc->quiesceTick(curTick() + sim_clock::as_int::ns * ns);
}
void
quiesceCycles(ThreadContext *tc, uint64_t cycles)
{
DPRINTF(PseudoInst, "pseudo_inst::quiesceCycles(%i)\n", cycles);
tc->quiesceTick(tc->getCpuPtr()->clockEdge(Cycles(cycles)));
}
uint64_t
quiesceTime(ThreadContext *tc)
{
DPRINTF(PseudoInst, "pseudo_inst::quiesceTime()\n");
return (tc->readLastActivate() - tc->readLastSuspend()) /
sim_clock::as_int::ns;
}
uint64_t
rpns(ThreadContext *tc)
{
DPRINTF(PseudoInst, "pseudo_inst::rpns()\n");
return curTick() / sim_clock::as_int::ns;
}
void
wakeCPU(ThreadContext *tc, uint64_t cpuid)
{
DPRINTF(PseudoInst, "pseudo_inst::wakeCPU(%i)\n", cpuid);
System *sys = tc->getSystemPtr();
if (sys->threads.size() <= cpuid) {
warn("pseudo_inst::wakeCPU(%i), cpuid greater than number of contexts"
"(%i)\n", cpuid, sys->threads.size());
return;
}
ThreadContext *other_tc = sys->threads[cpuid];
if (other_tc->status() == ThreadContext::Suspended)
other_tc->activate();
}
void
m5exit(ThreadContext *tc, Tick delay)
{
DPRINTF(PseudoInst, "pseudo_inst::m5exit(%i)\n", delay);
if (DistIface::readyToExit(delay)) {
Tick when = curTick() + delay * sim_clock::as_int::ns;
exitSimLoop("m5_exit instruction encountered", 0, when, 0, true);
}
}
// m5sum is for sanity checking the gem5 op interface.
uint64_t
m5sum(ThreadContext *tc, uint64_t a, uint64_t b, uint64_t c,
uint64_t d, uint64_t e, uint64_t f)
{
DPRINTF(PseudoInst, "pseudo_inst::m5sum(%#x, %#x, %#x, %#x, %#x, %#x)\n",
a, b, c, d, e, f);
return a + b + c + d + e + f;
}
void
m5fail(ThreadContext *tc, Tick delay, uint64_t code)
{
DPRINTF(PseudoInst, "pseudo_inst::m5fail(%i, %i)\n", delay, code);
Tick when = curTick() + delay * sim_clock::as_int::ns;
exitSimLoop("m5_fail instruction encountered", code, when, 0, true);
}
void
loadsymbol(ThreadContext *tc)
{
DPRINTF(PseudoInst, "pseudo_inst::loadsymbol()\n");
const std::string &filename = tc->getCpuPtr()->system->params().symbolfile;
if (filename.empty()) {
return;
}
std::string buffer;
std::ifstream file(filename.c_str());
if (!file)
fatal("file error: Can't open symbol table file %s\n", filename);
while (!file.eof()) {
getline(file, buffer);
if (buffer.empty())
continue;
std::string::size_type idx = buffer.find(' ');
if (idx == std::string::npos)
continue;
std::string address = "0x" + buffer.substr(0, idx);
eat_white(address);
if (address.empty())
continue;
// Skip over letter and space
std::string symbol = buffer.substr(idx + 3);
eat_white(symbol);
if (symbol.empty())
continue;
Addr addr;
if (!to_number(address, addr))
continue;
if (!tc->getSystemPtr()->workload->insertSymbol(
{ loader::Symbol::Binding::Global, symbol, addr })) {
continue;
}
DPRINTF(Loader, "Loaded symbol: %s @ %#llx\n", symbol, addr);
}
file.close();
}
void
addsymbol(ThreadContext *tc, Addr addr, Addr symbolAddr)
{
DPRINTF(PseudoInst, "pseudo_inst::addsymbol(0x%x, 0x%x)\n",
addr, symbolAddr);
std::string symbol;
TranslatingPortProxy fs_proxy(tc);
SETranslatingPortProxy se_proxy(tc);
PortProxy &virt_proxy = FullSystem ? fs_proxy : se_proxy;
virt_proxy.readString(symbol, symbolAddr);
DPRINTF(Loader, "Loaded symbol: %s @ %#llx\n", symbol, addr);
tc->getSystemPtr()->workload->insertSymbol(
{ loader::Symbol::Binding::Global, symbol, addr });
loader::debugSymbolTable.insert(
{ loader::Symbol::Binding::Global, symbol, addr });
}
uint64_t
initParam(ThreadContext *tc, uint64_t key_str1, uint64_t key_str2)
{
DPRINTF(PseudoInst, "pseudo_inst::initParam() key:%s%s\n",
(char *)&key_str1, (char *)&key_str2);
// The key parameter string is passed in via two 64-bit registers. We copy
// out the characters from the 64-bit integer variables here, and
// concatenate them in the key character buffer
const int len = 2 * sizeof(uint64_t) + 1;
char key[len];
std::memset(key, '\0', len);
std::array<uint64_t, 2> key_regs = {{ key_str1, key_str2 }};
key_regs = letoh(key_regs);
std::memcpy(key, key_regs.data(), sizeof(key_regs));
// Check key parameter to figure out what to return.
const std::string key_str(key);
if (key == DEFAULT)
return tc->getCpuPtr()->system->init_param;
else if (key == DIST_RANK)
return DistIface::rankParam();
else if (key == DIST_SIZE)
return DistIface::sizeParam();
else
panic("Unknown key for initparam pseudo instruction:\"%s\"", key_str);
}
void
resetstats(ThreadContext *tc, Tick delay, Tick period)
{
DPRINTF(PseudoInst, "pseudo_inst::resetstats(%i, %i)\n", delay, period);
if (!tc->getCpuPtr()->params().do_statistics_insts)
return;
Tick when = curTick() + delay * sim_clock::as_int::ns;
Tick repeat = period * sim_clock::as_int::ns;
statistics::schedStatEvent(false, true, when, repeat);
}
void
dumpstats(ThreadContext *tc, Tick delay, Tick period)
{
DPRINTF(PseudoInst, "pseudo_inst::dumpstats(%i, %i)\n", delay, period);
if (!tc->getCpuPtr()->params().do_statistics_insts)
return;
Tick when = curTick() + delay * sim_clock::as_int::ns;
Tick repeat = period * sim_clock::as_int::ns;
statistics::schedStatEvent(true, false, when, repeat);
}
void
dumpresetstats(ThreadContext *tc, Tick delay, Tick period)
{
DPRINTF(PseudoInst, "pseudo_inst::dumpresetstats(%i, %i)\n", delay,
period);
if (!tc->getCpuPtr()->params().do_statistics_insts)
return;
Tick when = curTick() + delay * sim_clock::as_int::ns;
Tick repeat = period * sim_clock::as_int::ns;
statistics::schedStatEvent(true, true, when, repeat);
}
void
m5checkpoint(ThreadContext *tc, Tick delay, Tick period)
{
DPRINTF(PseudoInst, "pseudo_inst::m5checkpoint(%i, %i)\n", delay, period);
if (!tc->getCpuPtr()->params().do_checkpoint_insts)
return;
if (DistIface::readyToCkpt(delay, period)) {
Tick when = curTick() + delay * sim_clock::as_int::ns;
Tick repeat = period * sim_clock::as_int::ns;
exitSimLoop("checkpoint", 0, when, repeat);
}
}
uint64_t
readfile(ThreadContext *tc, Addr vaddr, uint64_t len, uint64_t offset)
{
DPRINTF(PseudoInst, "pseudo_inst::readfile(0x%x, 0x%x, 0x%x)\n",
vaddr, len, offset);
const std::string &file = tc->getSystemPtr()->params().readfile;
if (file.empty()) {
return 0;
}
uint64_t result = 0;
int fd = ::open(file.c_str(), O_RDONLY, 0);
if (fd < 0)
panic("could not open file %s\n", file);
if (::lseek(fd, offset, SEEK_SET) < 0)
panic("could not seek: %s", strerror(errno));
char *buf = new char[len];
char *p = buf;
while (len > 0) {
int bytes = ::read(fd, p, len);
if (bytes <= 0)
break;
p += bytes;
result += bytes;
len -= bytes;
}
close(fd);
TranslatingPortProxy fs_proxy(tc);
SETranslatingPortProxy se_proxy(tc);
PortProxy &virt_proxy = FullSystem ? fs_proxy : se_proxy;
virt_proxy.writeBlob(vaddr, buf, result);
delete [] buf;
return result;
}
uint64_t
writefile(ThreadContext *tc, Addr vaddr, uint64_t len, uint64_t offset,
Addr filename_addr)
{
DPRINTF(PseudoInst, "pseudo_inst::writefile(0x%x, 0x%x, 0x%x, 0x%x)\n",
vaddr, len, offset, filename_addr);
// copy out target filename
std::string filename;
TranslatingPortProxy fs_proxy(tc);
SETranslatingPortProxy se_proxy(tc);
PortProxy &virt_proxy = FullSystem ? fs_proxy : se_proxy;
virt_proxy.readString(filename, filename_addr);
OutputStream *out;
if (offset == 0) {
// create a new file (truncate)
out = simout.create(filename, true, true);
} else {
// do not truncate file if offset is non-zero
// (ios::in flag is required as well to keep the existing data
// intact, otherwise existing data will be zeroed out.)
out = simout.open(filename,
std::ios::in | std::ios::out | std::ios::binary, true);
}
std::ostream *os(out->stream());
if (!os)
panic("could not open file %s\n", filename);
if (offset != 0) {
// seek to offset
os->seekp(offset);
}
// copy out data and write to file
char *buf = new char[len];
virt_proxy.readBlob(vaddr, buf, len);
os->write(buf, len);
if (os->fail() || os->bad())
panic("Error while doing writefile!\n");
simout.close(out);
delete [] buf;
return len;
}
void
debugbreak(ThreadContext *tc)
{
DPRINTF(PseudoInst, "pseudo_inst::debugbreak()\n");
debug::breakpoint();
}
void
switchcpu(ThreadContext *tc)
{
DPRINTF(PseudoInst, "pseudo_inst::switchcpu()\n");
exitSimLoop("switchcpu");
}
void
togglesync(ThreadContext *tc)
{
DPRINTF(PseudoInst, "pseudo_inst::togglesync()\n");
DistIface::toggleSync(tc);
}
void
triggerWorkloadEvent(ThreadContext *tc)
{
DPRINTF(PseudoInst, "pseudo_inst::triggerWorkloadEvent()\n");
tc->getSystemPtr()->workload->event(tc);
}
//
// This function is executed when annotated work items begin. Depending on
// what the user specified at the command line, the simulation may exit and/or
// take a checkpoint when a certain work item begins.
//
void
workbegin(ThreadContext *tc, uint64_t workid, uint64_t threadid)
{
DPRINTF(PseudoInst, "pseudo_inst::workbegin(%i, %i)\n", workid, threadid);
System *sys = tc->getSystemPtr();
const System::Params &params = sys->params();
if (params.exit_on_work_items) {
exitSimLoop("workbegin", static_cast<int>(workid));
return;
}
DPRINTF(WorkItems, "Work Begin workid: %d, threadid %d\n", workid,
threadid);
tc->getCpuPtr()->workItemBegin();
sys->workItemBegin(threadid, workid);
//
// If specified, determine if this is the specific work item the user
// identified
//
if (params.work_item_id == -1 || params.work_item_id == workid) {
uint64_t systemWorkBeginCount = sys->incWorkItemsBegin();
int cpuId = tc->getCpuPtr()->cpuId();
if (params.work_cpus_ckpt_count != 0 &&
sys->markWorkItem(cpuId) >= params.work_cpus_ckpt_count) {
//
// If active cpus equals checkpoint count, create checkpoint
//
exitSimLoop("checkpoint");
}
if (systemWorkBeginCount == params.work_begin_ckpt_count) {
//
// Note: the string specified as the cause of the exit event must
// exactly equal "checkpoint" inorder to create a checkpoint
//
exitSimLoop("checkpoint");
}
if (systemWorkBeginCount == params.work_begin_exit_count) {
//
// If a certain number of work items started, exit simulation
//
exitSimLoop("work started count reach");
}
if (cpuId == params.work_begin_cpu_id_exit) {
//
// If work started on the cpu id specified, exit simulation
//
exitSimLoop("work started on specific cpu");
}
}
}
//
// This function is executed when annotated work items end. Depending on
// what the user specified at the command line, the simulation may exit and/or
// take a checkpoint when a certain work item ends.
//
void
workend(ThreadContext *tc, uint64_t workid, uint64_t threadid)
{
DPRINTF(PseudoInst, "pseudo_inst::workend(%i, %i)\n", workid, threadid);
System *sys = tc->getSystemPtr();
const System::Params &params = sys->params();
if (params.exit_on_work_items) {
exitSimLoop("workend", static_cast<int>(workid));
return;
}
DPRINTF(WorkItems, "Work End workid: %d, threadid %d\n", workid, threadid);
tc->getCpuPtr()->workItemEnd();
sys->workItemEnd(threadid, workid);
//
// If specified, determine if this is the specific work item the user
// identified
//
if (params.work_item_id == -1 || params.work_item_id == workid) {
uint64_t systemWorkEndCount = sys->incWorkItemsEnd();
int cpuId = tc->getCpuPtr()->cpuId();
if (params.work_cpus_ckpt_count != 0 &&
sys->markWorkItem(cpuId) >= params.work_cpus_ckpt_count) {
//
// If active cpus equals checkpoint count, create checkpoint
//
exitSimLoop("checkpoint");
}
if (params.work_end_ckpt_count != 0 &&
systemWorkEndCount == params.work_end_ckpt_count) {
//
// If total work items completed equals checkpoint count, create
// checkpoint
//
exitSimLoop("checkpoint");
}
if (params.work_end_exit_count != 0 &&
systemWorkEndCount == params.work_end_exit_count) {
//
// If total work items completed equals exit count, exit simulation
//
exitSimLoop("work items exit count reached");
}
}
}
} // namespace pseudo_inst
} // namespace gem5