blob: 94ebd0cf2f597532cd2cadcf96e9bdb731a37156 [file] [log] [blame]
/*
* Copyright (c) 2012 Google
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __ARCH_X86_DECODER_HH__
#define __ARCH_X86_DECODER_HH__
#include <cassert>
#include <unordered_map>
#include <vector>
#include "arch/generic/decoder.hh"
#include "arch/x86/microcode_rom.hh"
#include "arch/x86/regs/misc.hh"
#include "arch/x86/types.hh"
#include "base/bitfield.hh"
#include "base/logging.hh"
#include "base/trace.hh"
#include "base/types.hh"
#include "cpu/decode_cache.hh"
#include "cpu/static_inst.hh"
#include "debug/Decoder.hh"
namespace X86ISA
{
class ISA;
class Decoder : public InstDecoder
{
private:
// These are defined and documented in decoder_tables.cc
static const uint8_t SizeTypeToSize[3][10];
typedef const uint8_t ByteTable[256];
static ByteTable Prefixes;
static ByteTable UsesModRMOneByte;
static ByteTable UsesModRMTwoByte;
static ByteTable UsesModRMThreeByte0F38;
static ByteTable UsesModRMThreeByte0F3A;
static ByteTable ImmediateTypeOneByte;
static ByteTable ImmediateTypeTwoByte;
static ByteTable ImmediateTypeThreeByte0F38;
static ByteTable ImmediateTypeThreeByte0F3A;
static ByteTable ImmediateTypeVex[10];
static X86ISAInst::MicrocodeRom microcodeRom;
protected:
struct InstBytes
{
StaticInstPtr si;
std::vector<MachInst> chunks;
std::vector<MachInst> masks;
int lastOffset;
InstBytes() : lastOffset(0)
{}
};
static InstBytes dummy;
// The bytes to be predecoded.
MachInst fetchChunk;
InstBytes *instBytes = &dummy;
int chunkIdx;
// The pc of the start of fetchChunk.
Addr basePC = 0;
// The pc the current instruction started at.
Addr origPC = 0;
// The offset into fetchChunk of current processing.
int offset = 0;
// The extended machine instruction being generated.
ExtMachInst emi;
// Predecoding state.
X86Mode mode = LongMode;
X86SubMode submode = SixtyFourBitMode;
uint8_t altOp = 0;
uint8_t defOp = 0;
uint8_t altAddr = 0;
uint8_t defAddr = 0;
uint8_t stack = 0;
uint8_t
getNextByte()
{
return ((uint8_t *)&fetchChunk)[offset];
}
void
getImmediate(int &collected, uint64_t &current, int size)
{
// Figure out how many bytes we still need to get for the
// immediate.
int toGet = size - collected;
// Figure out how many bytes are left in our "buffer".
int remaining = sizeof(MachInst) - offset;
// Get as much as we need, up to the amount available.
toGet = toGet > remaining ? remaining : toGet;
// Shift the bytes we want to be all the way to the right
uint64_t partialImm = fetchChunk >> (offset * 8);
// Mask off what we don't want.
partialImm &= mask(toGet * 8);
// Shift it over to overlay with our displacement.
partialImm <<= (immediateCollected * 8);
// Put it into our displacement.
current |= partialImm;
// Update how many bytes we've collected.
collected += toGet;
consumeBytes(toGet);
}
void
updateOffsetState()
{
assert(offset <= sizeof(MachInst));
if (offset == sizeof(MachInst)) {
DPRINTF(Decoder, "At the end of a chunk, idx = %d, chunks = %d.\n",
chunkIdx, instBytes->chunks.size());
chunkIdx++;
if (chunkIdx == instBytes->chunks.size()) {
outOfBytes = true;
} else {
offset = 0;
fetchChunk = instBytes->chunks[chunkIdx];
basePC += sizeof(MachInst);
}
}
}
void
consumeByte()
{
offset++;
updateOffsetState();
}
void
consumeBytes(int numBytes)
{
offset += numBytes;
updateOffsetState();
}
// State machine state.
protected:
// Whether or not we're out of bytes.
bool outOfBytes = true;
// Whether we've completed generating an ExtMachInst.
bool instDone = false;
// The size of the displacement value.
int displacementSize;
// The size of the immediate value.
int immediateSize;
// This is how much of any immediate value we've gotten. This is used
// for both the actual immediate and the displacement.
int immediateCollected;
enum State {
ResetState,
FromCacheState,
PrefixState,
Vex2Of2State,
Vex2Of3State,
Vex3Of3State,
VexOpcodeState,
OneByteOpcodeState,
TwoByteOpcodeState,
ThreeByte0F38OpcodeState,
ThreeByte0F3AOpcodeState,
ModRMState,
SIBState,
DisplacementState,
ImmediateState,
// We should never get to this state. Getting here is an error.
ErrorState
};
State state = ResetState;
// Functions to handle each of the states
State doResetState();
State doFromCacheState();
State doPrefixState(uint8_t);
State doVex2Of2State(uint8_t);
State doVex2Of3State(uint8_t);
State doVex3Of3State(uint8_t);
State doVexOpcodeState(uint8_t);
State doOneByteOpcodeState(uint8_t);
State doTwoByteOpcodeState(uint8_t);
State doThreeByte0F38OpcodeState(uint8_t);
State doThreeByte0F3AOpcodeState(uint8_t);
State doModRMState(uint8_t);
State doSIBState(uint8_t);
State doDisplacementState();
State doImmediateState();
// Process the actual opcode found earlier, using the supplied tables.
State processOpcode(ByteTable &immTable, ByteTable &modrmTable,
bool addrSizedImm = false);
// Process the opcode found with VEX / XOP prefix.
State processExtendedOpcode(ByteTable &immTable);
protected:
/// Caching for decoded instruction objects.
typedef RegVal CacheKey;
typedef DecodeCache::AddrMap<Decoder::InstBytes> DecodePages;
DecodePages *decodePages = nullptr;
typedef std::unordered_map<CacheKey, DecodePages *> AddrCacheMap;
AddrCacheMap addrCacheMap;
DecodeCache::InstMap<ExtMachInst> *instMap = nullptr;
typedef std::unordered_map<
CacheKey, DecodeCache::InstMap<ExtMachInst> *> InstCacheMap;
static InstCacheMap instCacheMap;
public:
Decoder(ISA *isa=nullptr)
{
emi.reset();
emi.mode.mode = mode;
emi.mode.submode = submode;
}
void
setM5Reg(HandyM5Reg m5Reg)
{
mode = (X86Mode)(uint64_t)m5Reg.mode;
submode = (X86SubMode)(uint64_t)m5Reg.submode;
emi.mode.mode = mode;
emi.mode.submode = submode;
altOp = m5Reg.altOp;
defOp = m5Reg.defOp;
altAddr = m5Reg.altAddr;
defAddr = m5Reg.defAddr;
stack = m5Reg.stack;
AddrCacheMap::iterator amIter = addrCacheMap.find(m5Reg);
if (amIter != addrCacheMap.end()) {
decodePages = amIter->second;
} else {
decodePages = new DecodePages;
addrCacheMap[m5Reg] = decodePages;
}
InstCacheMap::iterator imIter = instCacheMap.find(m5Reg);
if (imIter != instCacheMap.end()) {
instMap = imIter->second;
} else {
instMap = new DecodeCache::InstMap<ExtMachInst>;
instCacheMap[m5Reg] = instMap;
}
}
void
takeOverFrom(Decoder *old)
{
mode = old->mode;
submode = old->submode;
emi.mode.mode = mode;
emi.mode.submode = submode;
altOp = old->altOp;
defOp = old->defOp;
altAddr = old->altAddr;
defAddr = old->defAddr;
stack = old->stack;
}
void reset() { state = ResetState; }
void process();
// Use this to give data to the decoder. This should be used
// when there is control flow.
void
moreBytes(const PCState &pc, Addr fetchPC, MachInst data)
{
DPRINTF(Decoder, "Getting more bytes.\n");
basePC = fetchPC;
offset = (fetchPC >= pc.instAddr()) ? 0 : pc.instAddr() - fetchPC;
fetchChunk = letoh(data);
outOfBytes = false;
process();
}
bool needMoreBytes() { return outOfBytes; }
bool instReady() { return instDone; }
void
updateNPC(X86ISA::PCState &nextPC)
{
if (!nextPC.size()) {
int size = basePC + offset - origPC;
DPRINTF(Decoder,
"Calculating the instruction size: "
"basePC: %#x offset: %#x origPC: %#x size: %d\n",
basePC, offset, origPC, size);
nextPC.size(size);
nextPC.npc(nextPC.pc() + size);
}
}
public:
StaticInstPtr decodeInst(ExtMachInst mach_inst);
/// Decode a machine instruction.
/// @param mach_inst The binary instruction to decode.
/// @retval A pointer to the corresponding StaticInst object.
StaticInstPtr decode(ExtMachInst mach_inst, Addr addr);
StaticInstPtr decode(X86ISA::PCState &nextPC);
StaticInstPtr fetchRomMicroop(
MicroPC micropc, StaticInstPtr curMacroop) override;
};
} // namespace X86ISA
#endif // __ARCH_X86_DECODER_HH__