blob: ef2a373d6ce71c7f2cbe31efa925042eb71aec8a [file] [log] [blame]
/*****************************************************************************
* McPAT/CACTI
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
***************************************************************************/
#include "crossbar.h"
#define ASPECT_THRESHOLD .8
#define ADJ 1
Crossbar::Crossbar(
double n_inp_,
double n_out_,
double flit_size_,
TechnologyParameter::DeviceType *dt
): n_inp(n_inp_), n_out(n_out_), flit_size(flit_size_), deviceType(dt) {
min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio * g_tp.min_w_nmos_;
Vdd = dt->Vdd;
CB_ADJ = 1;
}
Crossbar::~Crossbar() {}
double Crossbar::output_buffer() {
//Wire winit(4, 4);
double l_eff = n_inp * flit_size * g_tp.wire_outside_mat.pitch;
Wire w1(g_ip->wt, l_eff);
//double s1 = w1.repeater_size *l_eff*ADJ/w1.repeater_spacing;
double s1 = w1.repeater_size * (l_eff < w1.repeater_spacing ?
l_eff * ADJ / w1.repeater_spacing : ADJ);
double pton_size = deviceType->n_to_p_eff_curr_drv_ratio;
// the model assumes input capacitance of the wire driver = input capacitance of nand + nor = input cap of the driver transistor
TriS1 = s1 * (1 + pton_size) / (2 + pton_size + 1 + 2 * pton_size);
TriS2 = s1; //driver transistor
if (TriS1 < 1)
TriS1 = 1;
double input_cap = gate_C(TriS1 * (2 * min_w_pmos + g_tp.min_w_nmos_), 0) +
gate_C(TriS1 * (min_w_pmos + 2 * g_tp.min_w_nmos_), 0);
// input_cap += drain_C_(TriS1*g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
// drain_C_(TriS1*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)*2 +
// gate_C(TriS2*g_tp.min_w_nmos_, 0)+
// drain_C_(TriS1*min_w_pmos, NCH, 1, 1, g_tp.cell_h_def)*2 +
// drain_C_(TriS1*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
// gate_C(TriS2*min_w_pmos, 0);
tri_int_cap = drain_C_(TriS1 * g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
drain_C_(TriS1 * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) * 2 +
gate_C(TriS2 * g_tp.min_w_nmos_, 0) +
drain_C_(TriS1 * min_w_pmos, NCH, 1, 1, g_tp.cell_h_def) * 2 +
drain_C_(TriS1 * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
gate_C(TriS2 * min_w_pmos, 0);
double output_cap = drain_C_(TriS2 * g_tp.min_w_nmos_, NCH, 1, 1,
g_tp.cell_h_def) +
drain_C_(TriS2 * min_w_pmos, PCH, 1, 1, g_tp.cell_h_def);
double ctr_cap = gate_C(TriS2 * (min_w_pmos + g_tp.min_w_nmos_), 0);
tri_inp_cap = input_cap;
tri_out_cap = output_cap;
tri_ctr_cap = ctr_cap;
return input_cap + output_cap + ctr_cap;
}
void Crossbar::compute_power() {
Wire winit(4, 4);
double tri_cap = output_buffer();
assert(tri_cap > 0);
//area of a tristate logic
double g_area = compute_gate_area(INV, 1, TriS2 * g_tp.min_w_nmos_,
TriS2 * min_w_pmos, g_tp.cell_h_def);
g_area *= 2; // to model area of output transistors
g_area += compute_gate_area (NAND, 2, TriS1 * 2 * g_tp.min_w_nmos_,
TriS1 * min_w_pmos, g_tp.cell_h_def);
g_area += compute_gate_area (NOR, 2, TriS1 * g_tp.min_w_nmos_,
TriS1 * 2 * min_w_pmos, g_tp.cell_h_def);
double width /*per tristate*/ = g_area / (CB_ADJ * g_tp.cell_h_def);
// effective no. of tristate buffers that need to be laid side by side
int ntri = (int)ceil(g_tp.cell_h_def / (g_tp.wire_outside_mat.pitch));
double wire_len = MAX(width * ntri * n_out,
flit_size * g_tp.wire_outside_mat.pitch * n_out);
Wire w1(g_ip->wt, wire_len);
area.w = wire_len;
area.h = g_tp.wire_outside_mat.pitch * n_inp * flit_size * CB_ADJ;
Wire w2(g_ip->wt, area.h);
double aspect_ratio_cb = (area.h / area.w) * (n_out / n_inp);
if (aspect_ratio_cb > 1) aspect_ratio_cb = 1 / aspect_ratio_cb;
if (aspect_ratio_cb < ASPECT_THRESHOLD) {
if (n_out > 2 && n_inp > 2) {
CB_ADJ += 0.2;
//cout << "CB ADJ " << CB_ADJ << endl;
if (CB_ADJ < 4) {
this->compute_power();
}
}
}
power.readOp.dynamic =
(w1.power.readOp.dynamic + w2.power.readOp.dynamic +
(tri_inp_cap * n_out + tri_out_cap * n_inp + tri_ctr_cap +
tri_int_cap) * Vdd * Vdd) * flit_size;
power.readOp.leakage = n_inp * n_out * flit_size * (
cmos_Isub_leakage(g_tp.min_w_nmos_ * TriS2 * 2, min_w_pmos * TriS2 * 2,
1, inv) * Vdd +
cmos_Isub_leakage(g_tp.min_w_nmos_ * TriS1 * 3, min_w_pmos * TriS1 * 3,
2, nand) * Vdd +
cmos_Isub_leakage(g_tp.min_w_nmos_ * TriS1 * 3, min_w_pmos * TriS1 * 3,
2, nor) * Vdd +
w1.power.readOp.leakage + w2.power.readOp.leakage);
power.readOp.gate_leakage = n_inp * n_out * flit_size * (
cmos_Ig_leakage(g_tp.min_w_nmos_ * TriS2 * 2, min_w_pmos * TriS2 * 2,
1, inv) * Vdd +
cmos_Ig_leakage(g_tp.min_w_nmos_ * TriS1 * 3, min_w_pmos * TriS1 * 3,
2, nand) * Vdd +
cmos_Ig_leakage(g_tp.min_w_nmos_ * TriS1 * 3, min_w_pmos * TriS1 * 3,
2, nor) * Vdd +
w1.power.readOp.gate_leakage + w2.power.readOp.gate_leakage);
// delay calculation
double l_eff = n_inp * flit_size * g_tp.wire_outside_mat.pitch;
Wire wdriver(g_ip->wt, l_eff);
double res = g_tp.wire_outside_mat.R_per_um * (area.w + area.h) +
tr_R_on(g_tp.min_w_nmos_ * wdriver.repeater_size, NCH, 1);
double cap = g_tp.wire_outside_mat.C_per_um * (area.w + area.h) + n_out *
tri_inp_cap + n_inp * tri_out_cap;
delay = horowitz(w1.signal_rise_time(), res * cap, deviceType->Vth /
deviceType->Vdd, deviceType->Vth / deviceType->Vdd, RISE);
Wire wreset();
}
void Crossbar::print_crossbar() {
cout << "\nCrossbar Stats (" << n_inp << "x" << n_out << ")\n\n";
cout << "Flit size : " << flit_size << " bits" << endl;
cout << "Width : " << area.w << " u" << endl;
cout << "Height : " << area.h << " u" << endl;
cout << "Dynamic Power : " << power.readOp.dynamic*1e9 *
MIN(n_inp, n_out) << " (nJ)" << endl;
cout << "Leakage Power : " << power.readOp.leakage*1e3 << " (mW)"
<< endl;
cout << "Gate Leakage Power : " << power.readOp.gate_leakage*1e3
<< " (mW)" << endl;
cout << "Crossbar Delay : " << delay*1e12 << " ps\n";
}