blob: f7184d8a92ccd5b291c1d263966fcb90e56d1fc3 [file] [log] [blame]
/*****************************************************************************
* McPAT/CACTI
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
***************************************************************************/
#include <iomanip>
#include <iostream>
#include <string>
#include "area.h"
#include "parameter.h"
using namespace std;
InputParameter * g_ip;
TechnologyParameter g_tp;
void TechnologyParameter::DeviceType::display(uint32_t indent) {
string indent_str(indent, ' ');
cout << indent_str << "C_g_ideal = " << setw(12) << C_g_ideal << " F/um" << endl;
cout << indent_str << "C_fringe = " << setw(12) << C_fringe << " F/um" << endl;
cout << indent_str << "C_overlap = " << setw(12) << C_overlap << " F/um" << endl;
cout << indent_str << "C_junc = " << setw(12) << C_junc << " F/um^2" << endl;
cout << indent_str << "l_phy = " << setw(12) << l_phy << " um" << endl;
cout << indent_str << "l_elec = " << setw(12) << l_elec << " um" << endl;
cout << indent_str << "R_nch_on = " << setw(12) << R_nch_on << " ohm-um" << endl;
cout << indent_str << "R_pch_on = " << setw(12) << R_pch_on << " ohm-um" << endl;
cout << indent_str << "Vdd = " << setw(12) << Vdd << " V" << endl;
cout << indent_str << "Vth = " << setw(12) << Vth << " V" << endl;
cout << indent_str << "I_on_n = " << setw(12) << I_on_n << " A/um" << endl;
cout << indent_str << "I_on_p = " << setw(12) << I_on_p << " A/um" << endl;
cout << indent_str << "I_off_n = " << setw(12) << I_off_n << " A/um" << endl;
cout << indent_str << "I_off_p = " << setw(12) << I_off_p << " A/um" << endl;
cout << indent_str << "C_ox = " << setw(12) << C_ox << " F/um^2" << endl;
cout << indent_str << "t_ox = " << setw(12) << t_ox << " um" << endl;
cout << indent_str << "n_to_p_eff_curr_drv_ratio = " << n_to_p_eff_curr_drv_ratio << endl;
}
void TechnologyParameter::InterconnectType::display(uint32_t indent) {
string indent_str(indent, ' ');
cout << indent_str << "pitch = " << setw(12) << pitch << " um" << endl;
cout << indent_str << "R_per_um = " << setw(12) << R_per_um << " ohm/um" << endl;
cout << indent_str << "C_per_um = " << setw(12) << C_per_um << " F/um" << endl;
}
void TechnologyParameter::ScalingFactor::display(uint32_t indent) {
string indent_str(indent, ' ');
cout << indent_str << "logic_scaling_co_eff = " << setw(12) << logic_scaling_co_eff << endl;
cout << indent_str << "curr_core_tx_density = " << setw(12) << core_tx_density << " # of tx/um^2" << endl;
}
void TechnologyParameter::MemoryType::display(uint32_t indent) {
string indent_str(indent, ' ');
cout << indent_str << "b_w = " << setw(12) << b_w << " um" << endl;
cout << indent_str << "b_h = " << setw(12) << b_h << " um" << endl;
cout << indent_str << "cell_a_w = " << setw(12) << cell_a_w << " um" << endl;
cout << indent_str << "cell_pmos_w = " << setw(12) << cell_pmos_w << " um" << endl;
cout << indent_str << "cell_nmos_w = " << setw(12) << cell_nmos_w << " um" << endl;
cout << indent_str << "Vbitpre = " << setw(12) << Vbitpre << " V" << endl;
}
void TechnologyParameter::display(uint32_t indent) {
string indent_str(indent, ' ');
cout << indent_str << "ram_wl_stitching_overhead_ = " << setw(12) << ram_wl_stitching_overhead_ << " um" << endl;
cout << indent_str << "min_w_nmos_ = " << setw(12) << min_w_nmos_ << " um" << endl;
cout << indent_str << "max_w_nmos_ = " << setw(12) << max_w_nmos_ << " um" << endl;
cout << indent_str << "unit_len_wire_del = " << setw(12) << unit_len_wire_del << " s/um^2" << endl;
cout << indent_str << "FO4 = " << setw(12) << FO4 << " s" << endl;
cout << indent_str << "kinv = " << setw(12) << kinv << " s" << endl;
cout << indent_str << "vpp = " << setw(12) << vpp << " V" << endl;
cout << indent_str << "w_sense_en = " << setw(12) << w_sense_en << " um" << endl;
cout << indent_str << "w_sense_n = " << setw(12) << w_sense_n << " um" << endl;
cout << indent_str << "w_sense_p = " << setw(12) << w_sense_p << " um" << endl;
cout << indent_str << "w_iso = " << setw(12) << w_iso << " um" << endl;
cout << indent_str << "w_poly_contact = " << setw(12) << w_poly_contact << " um" << endl;
cout << indent_str << "spacing_poly_to_poly = " << setw(12) << spacing_poly_to_poly << " um" << endl;
cout << indent_str << "spacing_poly_to_contact = " << setw(12) << spacing_poly_to_contact << " um" << endl;
cout << endl;
cout << indent_str << "w_comp_inv_p1 = " << setw(12) << w_comp_inv_p1 << " um" << endl;
cout << indent_str << "w_comp_inv_p2 = " << setw(12) << w_comp_inv_p2 << " um" << endl;
cout << indent_str << "w_comp_inv_p3 = " << setw(12) << w_comp_inv_p3 << " um" << endl;
cout << indent_str << "w_comp_inv_n1 = " << setw(12) << w_comp_inv_n1 << " um" << endl;
cout << indent_str << "w_comp_inv_n2 = " << setw(12) << w_comp_inv_n2 << " um" << endl;
cout << indent_str << "w_comp_inv_n3 = " << setw(12) << w_comp_inv_n3 << " um" << endl;
cout << indent_str << "w_eval_inv_p = " << setw(12) << w_eval_inv_p << " um" << endl;
cout << indent_str << "w_eval_inv_n = " << setw(12) << w_eval_inv_n << " um" << endl;
cout << indent_str << "w_comp_n = " << setw(12) << w_comp_n << " um" << endl;
cout << indent_str << "w_comp_p = " << setw(12) << w_comp_p << " um" << endl;
cout << endl;
cout << indent_str << "dram_cell_I_on = " << setw(12) << dram_cell_I_on << " A/um" << endl;
cout << indent_str << "dram_cell_Vdd = " << setw(12) << dram_cell_Vdd << " V" << endl;
cout << indent_str << "dram_cell_I_off_worst_case_len_temp = " << setw(12) << dram_cell_I_off_worst_case_len_temp << " A/um" << endl;
cout << indent_str << "dram_cell_C = " << setw(12) << dram_cell_C << " F" << endl;
cout << indent_str << "gm_sense_amp_latch = " << setw(12) << gm_sense_amp_latch << " F/s" << endl;
cout << endl;
cout << indent_str << "w_nmos_b_mux = " << setw(12) << w_nmos_b_mux << " um" << endl;
cout << indent_str << "w_nmos_sa_mux = " << setw(12) << w_nmos_sa_mux << " um" << endl;
cout << indent_str << "w_pmos_bl_precharge = " << setw(12) << w_pmos_bl_precharge << " um" << endl;
cout << indent_str << "w_pmos_bl_eq = " << setw(12) << w_pmos_bl_eq << " um" << endl;
cout << indent_str << "MIN_GAP_BET_P_AND_N_DIFFS = " << setw(12) << MIN_GAP_BET_P_AND_N_DIFFS << " um" << endl;
cout << indent_str << "HPOWERRAIL = " << setw(12) << HPOWERRAIL << " um" << endl;
cout << indent_str << "cell_h_def = " << setw(12) << cell_h_def << " um" << endl;
cout << endl;
cout << indent_str << "SRAM cell transistor: " << endl;
sram_cell.display(indent + 2);
cout << endl;
cout << indent_str << "DRAM access transistor: " << endl;
dram_acc.display(indent + 2);
cout << endl;
cout << indent_str << "DRAM wordline transistor: " << endl;
dram_wl.display(indent + 2);
cout << endl;
cout << indent_str << "peripheral global transistor: " << endl;
peri_global.display(indent + 2);
cout << endl;
cout << indent_str << "wire local" << endl;
wire_local.display(indent + 2);
cout << endl;
cout << indent_str << "wire inside mat" << endl;
wire_inside_mat.display(indent + 2);
cout << endl;
cout << indent_str << "wire outside mat" << endl;
wire_outside_mat.display(indent + 2);
cout << endl;
cout << indent_str << "SRAM" << endl;
sram.display(indent + 2);
cout << endl;
cout << indent_str << "DRAM" << endl;
dram.display(indent + 2);
}
DynamicParameter::DynamicParameter():
use_inp_params(0), cell(), is_valid(true) {
}
DynamicParameter::DynamicParameter(
bool is_tag_,
int pure_ram_,
int pure_cam_,
double Nspd_,
unsigned int Ndwl_,
unsigned int Ndbl_,
unsigned int Ndcm_,
unsigned int Ndsam_lev_1_,
unsigned int Ndsam_lev_2_,
bool is_main_mem_):
is_tag(is_tag_), pure_ram(pure_ram_), pure_cam(pure_cam_), tagbits(0),
Nspd(Nspd_), Ndwl(Ndwl_), Ndbl(Ndbl_), Ndcm(Ndcm_),
Ndsam_lev_1(Ndsam_lev_1_), Ndsam_lev_2(Ndsam_lev_2_),
number_way_select_signals_mat(0), V_b_sense(0), use_inp_params(0),
is_main_mem(is_main_mem_), cell(), is_valid(false) {
ram_cell_tech_type = (is_tag) ? g_ip->tag_arr_ram_cell_tech_type : g_ip->data_arr_ram_cell_tech_type;
is_dram = ((ram_cell_tech_type == lp_dram) || (ram_cell_tech_type == comm_dram));
unsigned int capacity_per_die = g_ip->cache_sz / NUMBER_STACKED_DIE_LAYERS; // capacity per stacked die layer
const TechnologyParameter::InterconnectType & wire_local = g_tp.wire_local;
fully_assoc = (g_ip->fully_assoc) ? true : false;
// fully-assocative cache -- ref: CACTi 2.0 report
if (fully_assoc || pure_cam) {
if (Ndwl != 1 || //Ndwl is fixed to 1 for FA
Ndcm != 1 || //Ndcm is fixed to 1 for FA
Nspd < 1 || Nspd > 1 || //Nspd is fixed to 1 for FA
Ndsam_lev_1 != 1 || //Ndsam_lev_1 is fixed to one
Ndsam_lev_2 != 1 || //Ndsam_lev_2 is fixed to one
Ndbl < 2) {
return;
}
}
if ((is_dram) && (!is_tag) && (Ndcm > 1)) {
return; // For a DRAM array, each bitline has its own sense-amp
}
// If it's not an FA tag/data array, Ndwl should be at least two and Ndbl should be
// at least two because an array is assumed to have at least one mat. And a mat
// is formed out of two horizontal subarrays and two vertical subarrays
if (fully_assoc == false && (Ndwl < 1 || Ndbl < 1)) {
return;
}
//***********compute row, col of an subarray
if (!(fully_assoc || pure_cam)) {
//Not fully_asso nor cam
// if data array, let tagbits = 0
if (is_tag) {
if (g_ip->specific_tag) {
tagbits = g_ip->tag_w;
} else {
tagbits = ADDRESS_BITS + EXTRA_TAG_BITS - _log2(capacity_per_die) +
_log2(g_ip->tag_assoc * 2 - 1) - _log2(g_ip->nbanks);
}
tagbits = (((tagbits + 3) >> 2) << 2);
num_r_subarray = (int)ceil(capacity_per_die / (g_ip->nbanks *
g_ip->block_sz * g_ip->tag_assoc * Ndbl * Nspd));// + EPSILON);
num_c_subarray = (int)ceil((tagbits * g_ip->tag_assoc * Nspd / Ndwl));// + EPSILON);
//burst_length = 1;
} else {
num_r_subarray = (int)ceil(capacity_per_die / (g_ip->nbanks *
g_ip->block_sz * g_ip->data_assoc * Ndbl * Nspd));// + EPSILON);
num_c_subarray = (int)ceil((8 * g_ip->block_sz * g_ip->data_assoc * Nspd / Ndwl));// + EPSILON); + EPSILON);
// burst_length = g_ip->block_sz * 8 / g_ip->out_w;
}
if (num_r_subarray < MINSUBARRAYROWS) return;
if (num_r_subarray == 0) return;
if (num_r_subarray > MAXSUBARRAYROWS) return;
if (num_c_subarray < MINSUBARRAYCOLS) return;
if (num_c_subarray > MAXSUBARRAYCOLS) return;
}
else {//either fully-asso or cam
if (pure_cam) {
if (g_ip->specific_tag) {
tagbits = int(ceil(g_ip->tag_w / 8.0) * 8);
} else {
tagbits = int(ceil((ADDRESS_BITS + EXTRA_TAG_BITS) / 8.0) * 8);
// cout<<"Pure CAM needs tag width to be specified"<<endl;
// exit(0);
}
//tagbits = (((tagbits + 3) >> 2) << 2);
//TODO: error check input of tagbits and blocksize
//TODO: for pure CAM, g_ip->block should be number of entries.
tag_num_r_subarray = (int)ceil(capacity_per_die /
(g_ip->nbanks * tagbits / 8.0 * Ndbl));
//tag_num_c_subarray = (int)(tagbits + EPSILON);
tag_num_c_subarray = tagbits;
if (tag_num_r_subarray == 0) return;
if (tag_num_r_subarray > MAXSUBARRAYROWS) return;
if (tag_num_c_subarray < MINSUBARRAYCOLS) return;
if (tag_num_c_subarray > MAXSUBARRAYCOLS) return;
num_r_subarray = tag_num_r_subarray;
} else { //fully associative
if (g_ip->specific_tag) {
tagbits = g_ip->tag_w;
} else {
tagbits = ADDRESS_BITS + EXTRA_TAG_BITS - _log2(g_ip->block_sz);//TODO: should be the page_offset=log2(page size), but this info is not avail with CACTI, for McPAT this is no problem.
}
tagbits = (((tagbits + 3) >> 2) << 2);
tag_num_r_subarray = (int)(capacity_per_die /
(g_ip->nbanks * g_ip->block_sz * Ndbl));
tag_num_c_subarray = (int)ceil((tagbits * Nspd / Ndwl));// + EPSILON);
if (tag_num_r_subarray == 0) return;
if (tag_num_r_subarray > MAXSUBARRAYROWS) return;
if (tag_num_c_subarray < MINSUBARRAYCOLS) return;
if (tag_num_c_subarray > MAXSUBARRAYCOLS) return;
data_num_r_subarray = tag_num_r_subarray;
data_num_c_subarray = 8 * g_ip->block_sz;
if (data_num_r_subarray == 0) return;
if (data_num_r_subarray > MAXSUBARRAYROWS) return;
if (data_num_c_subarray < MINSUBARRAYCOLS) return;
if (data_num_c_subarray > MAXSUBARRAYCOLS) return;
num_r_subarray = tag_num_r_subarray;
}
}
num_subarrays = Ndwl * Ndbl;
//****************end of computation of row, col of an subarray
// calculate wire parameters
if (fully_assoc || pure_cam) {
cam_cell.h = g_tp.cam.b_h + 2 * wire_local.pitch *
(g_ip->num_rw_ports - 1 + g_ip->num_rd_ports + g_ip->num_wr_ports)
+ 2 * wire_local.pitch * (g_ip->num_search_ports - 1) +
wire_local.pitch * g_ip->num_se_rd_ports;
cam_cell.w = g_tp.cam.b_w + 2 * wire_local.pitch *
(g_ip->num_rw_ports - 1 + g_ip->num_rd_ports + g_ip->num_wr_ports)
+ 2 * wire_local.pitch * (g_ip->num_search_ports - 1) +
wire_local.pitch * g_ip->num_se_rd_ports;
cell.h = g_tp.sram.b_h + 2 * wire_local.pitch *
(g_ip->num_wr_ports + g_ip->num_rw_ports - 1 + g_ip->num_rd_ports)
+ 2 * wire_local.pitch * (g_ip->num_search_ports - 1);
cell.w = g_tp.sram.b_w + 2 * wire_local.pitch *
(g_ip->num_rw_ports - 1 + (g_ip->num_rd_ports -
g_ip->num_se_rd_ports)
+ g_ip->num_wr_ports) + g_tp.wire_local.pitch *
g_ip->num_se_rd_ports + 2 * wire_local.pitch *
(g_ip->num_search_ports - 1);
} else {
if (is_tag) {
cell.h = g_tp.sram.b_h + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 + g_ip->num_rd_ports +
g_ip->num_wr_ports);
cell.w = g_tp.sram.b_w + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 + g_ip->num_wr_ports +
(g_ip->num_rd_ports - g_ip->num_se_rd_ports)) +
wire_local.pitch * g_ip->num_se_rd_ports;
} else {
if (is_dram) {
cell.h = g_tp.dram.b_h;
cell.w = g_tp.dram.b_w;
} else {
cell.h = g_tp.sram.b_h + 2 * wire_local.pitch * (g_ip->num_wr_ports +
g_ip->num_rw_ports - 1 + g_ip->num_rd_ports);
cell.w = g_tp.sram.b_w + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 +
(g_ip->num_rd_ports - g_ip->num_se_rd_ports) +
g_ip->num_wr_ports) + g_tp.wire_local.pitch * g_ip->num_se_rd_ports;
}
}
}
double c_b_metal = cell.h * wire_local.C_per_um;
double C_bl;
if (!(fully_assoc || pure_cam)) {
if (is_dram) {
deg_bl_muxing = 1;
if (ram_cell_tech_type == comm_dram) {
C_bl = num_r_subarray * c_b_metal;
V_b_sense = (g_tp.dram_cell_Vdd / 2) * g_tp.dram_cell_C /
(g_tp.dram_cell_C + C_bl);
if (V_b_sense < VBITSENSEMIN) {
return;
}
V_b_sense = VBITSENSEMIN; // in any case, we fix sense amp input signal to a constant value
dram_refresh_period = 64e-3;
} else {
double Cbitrow_drain_cap = drain_C_(g_tp.dram.cell_a_w, NCH, 1, 0, cell.w, true, true) / 2.0;
C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal);
V_b_sense = (g_tp.dram_cell_Vdd / 2) * g_tp.dram_cell_C /
(g_tp.dram_cell_C + C_bl);
if (V_b_sense < VBITSENSEMIN) {
return; //Sense amp input signal is smaller that minimum allowable sense amp input signal
}
V_b_sense = VBITSENSEMIN; // in any case, we fix sense amp input signal to a constant value
//v_storage_worst = g_tp.dram_cell_Vdd / 2 - VBITSENSEMIN * (g_tp.dram_cell_C + C_bl) / g_tp.dram_cell_C;
//dram_refresh_period = 1.1 * g_tp.dram_cell_C * v_storage_worst / g_tp.dram_cell_I_off_worst_case_len_temp;
dram_refresh_period = 0.9 * g_tp.dram_cell_C * VDD_STORAGE_LOSS_FRACTION_WORST * g_tp.dram_cell_Vdd / g_tp.dram_cell_I_off_worst_case_len_temp;
}
} else { //SRAM
V_b_sense = (0.05 * g_tp.sram_cell.Vdd > VBITSENSEMIN) ? 0.05 * g_tp.sram_cell.Vdd : VBITSENSEMIN;
deg_bl_muxing = Ndcm;
// "/ 2.0" below is due to the fact that two adjacent access transistors share drain
// contacts in a physical layout
double Cbitrow_drain_cap = drain_C_(g_tp.sram.cell_a_w, NCH, 1, 0, cell.w, false, true) / 2.0;
C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal);
dram_refresh_period = 0;
}
} else {
c_b_metal = cam_cell.h * wire_local.C_per_um;//IBM and SUN design, SRAM array uses dummy cells to fill the blank space due to mismatch on CAM-RAM
V_b_sense = (0.05 * g_tp.sram_cell.Vdd > VBITSENSEMIN) ? 0.05 * g_tp.sram_cell.Vdd : VBITSENSEMIN;
deg_bl_muxing = 1;//FA fix as 1
// "/ 2.0" below is due to the fact that two adjacent access transistors share drain
// contacts in a physical layout
double Cbitrow_drain_cap = drain_C_(g_tp.cam.cell_a_w, NCH, 1, 0, cam_cell.w, false, true) / 2.0;//TODO: comment out these two lines
C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal);
dram_refresh_period = 0;
}
// do/di: data in/out, for fully associative they are the data width for normal read and write
// so/si: search data in/out, for fully associative they are the data width for the search ops
// for CAM, si=di, but so = matching address. do = data out = di (for normal read/write)
// so/si needs broadcase while do/di do not
if (fully_assoc || pure_cam) {
switch (Ndbl) {
case (0):
cout << " Invalid Ndbl \n" << endl;
exit(0);
break;
case (1):
num_mats_h_dir = 1;//one subarray per mat
num_mats_v_dir = 1;
break;
case (2):
num_mats_h_dir = 1;//two subarrays per mat
num_mats_v_dir = 1;
break;
default:
num_mats_h_dir = int(floor(sqrt(Ndbl / 4.0)));//4 subbarrys per mat
num_mats_v_dir = int(Ndbl / 4.0 / num_mats_h_dir);
}
num_mats = num_mats_h_dir * num_mats_v_dir;
if (fully_assoc) {
num_so_b_mat = data_num_c_subarray;
num_do_b_mat = data_num_c_subarray + tagbits;
} else {
num_so_b_mat = int(ceil(log2(num_r_subarray)) + ceil(log2(num_subarrays)));//the address contains the matched data
num_do_b_mat = tagbits;
}
} else {
num_mats_h_dir = MAX(Ndwl / 2, 1);
num_mats_v_dir = MAX(Ndbl / 2, 1);
num_mats = num_mats_h_dir * num_mats_v_dir;
num_do_b_mat = MAX((num_subarrays / num_mats) * num_c_subarray /
(deg_bl_muxing * Ndsam_lev_1 * Ndsam_lev_2), 1);
}
if (!(fully_assoc || pure_cam) && (num_do_b_mat <
(num_subarrays / num_mats))) {
return;
}
int deg_sa_mux_l1_non_assoc;
//TODO:the i/o for subbank is not necessary and should be removed.
if (!(fully_assoc || pure_cam)) {
if (!is_tag) {
if (is_main_mem == true) {
num_do_b_subbank = g_ip->int_prefetch_w * g_ip->out_w;
deg_sa_mux_l1_non_assoc = Ndsam_lev_1;
} else {
if (g_ip->fast_access == true) {
num_do_b_subbank = g_ip->out_w * g_ip->data_assoc;
deg_sa_mux_l1_non_assoc = Ndsam_lev_1;
} else {
num_do_b_subbank = g_ip->out_w;
deg_sa_mux_l1_non_assoc = Ndsam_lev_1 / g_ip->data_assoc;
if (deg_sa_mux_l1_non_assoc < 1) {
return;
}
}
}
} else {
num_do_b_subbank = tagbits * g_ip->tag_assoc;
if (num_do_b_mat < tagbits) {
return;
}
deg_sa_mux_l1_non_assoc = Ndsam_lev_1;
//num_do_b_mat = g_ip->tag_assoc / num_mats_h_dir;
}
} else {
if (fully_assoc) {
num_so_b_subbank = 8 * g_ip->block_sz;//TODO:internal perfetch should be considered also for fa
num_do_b_subbank = num_so_b_subbank + tag_num_c_subarray;
} else {
num_so_b_subbank = int(ceil(log2(num_r_subarray)) + ceil(log2(num_subarrays)));//the address contains the matched data
num_do_b_subbank = tag_num_c_subarray;
}
deg_sa_mux_l1_non_assoc = 1;
}
deg_senseamp_muxing_non_associativity = deg_sa_mux_l1_non_assoc;
if (fully_assoc || pure_cam) {
num_act_mats_hor_dir = 1;
num_act_mats_hor_dir_sl = num_mats_h_dir;//TODO: this is unnecessary, since search op, num_mats is used
} else {
num_act_mats_hor_dir = num_do_b_subbank / num_do_b_mat;
if (num_act_mats_hor_dir == 0) {
return;
}
}
//compute num_do_mat for tag
if (is_tag) {
if (!(fully_assoc || pure_cam)) {
num_do_b_mat = g_ip->tag_assoc / num_act_mats_hor_dir;
num_do_b_subbank = num_act_mats_hor_dir * num_do_b_mat;
}
}
if ((g_ip->is_cache == false && is_main_mem == true) ||
(PAGE_MODE == 1 && is_dram)) {
if (num_act_mats_hor_dir * num_do_b_mat * Ndsam_lev_1 * Ndsam_lev_2 !=
(int)g_ip->page_sz_bits) {
return;
}
}
// if (is_tag == false && g_ip->is_cache == true && !fully_assoc && !pure_cam && //TODO: TODO burst transfer should also apply to RAM arrays
if (is_tag == false && g_ip->is_main_mem == true &&
num_act_mats_hor_dir*num_do_b_mat*Ndsam_lev_1*Ndsam_lev_2 <
((int) g_ip->out_w * (int) g_ip->burst_len * (int) g_ip->data_assoc)) {
return;
}
if (num_act_mats_hor_dir > num_mats_h_dir) {
return;
}
//compute di for mat subbank and bank
if (!(fully_assoc || pure_cam)) {
if (!is_tag) {
if (g_ip->fast_access == true) {
num_di_b_mat = num_do_b_mat / g_ip->data_assoc;
} else {
num_di_b_mat = num_do_b_mat;
}
} else {
num_di_b_mat = tagbits;
}
} else {
if (fully_assoc) {
num_di_b_mat = num_do_b_mat;
//*num_subarrays/num_mats; bits per mat of CAM/FA is as same as cache,
//but inside the mat wire tracks need to be reserved for search data bus
num_si_b_mat = tagbits;
} else {
num_di_b_mat = tagbits;
num_si_b_mat = tagbits;//*num_subarrays/num_mats;
}
}
num_di_b_subbank = num_di_b_mat * num_act_mats_hor_dir;//normal cache or normal r/w for FA
num_si_b_subbank = num_si_b_mat; //* num_act_mats_hor_dir_sl; inside the data is broadcast
int num_addr_b_row_dec = _log2(num_r_subarray);
if ((fully_assoc || pure_cam))
num_addr_b_row_dec += _log2(num_subarrays / num_mats);
int number_subbanks = num_mats / num_act_mats_hor_dir;
number_subbanks_decode = _log2(number_subbanks);//TODO: add log2(num_subarray_per_bank) to FA/CAM
num_rw_ports = g_ip->num_rw_ports;
num_rd_ports = g_ip->num_rd_ports;
num_wr_ports = g_ip->num_wr_ports;
num_se_rd_ports = g_ip->num_se_rd_ports;
num_search_ports = g_ip->num_search_ports;
if (is_dram && is_main_mem) {
number_addr_bits_mat = MAX((unsigned int) num_addr_b_row_dec,
_log2(deg_bl_muxing) + _log2(deg_sa_mux_l1_non_assoc) + _log2(Ndsam_lev_2));
} else {
number_addr_bits_mat = num_addr_b_row_dec + _log2(deg_bl_muxing) +
_log2(deg_sa_mux_l1_non_assoc) + _log2(Ndsam_lev_2);
}
if (!(fully_assoc || pure_cam)) {
if (is_tag) {
num_di_b_bank_per_port = tagbits;
num_do_b_bank_per_port = g_ip->data_assoc;
} else {
num_di_b_bank_per_port = g_ip->out_w + g_ip->data_assoc;
num_do_b_bank_per_port = g_ip->out_w;
}
} else {
if (fully_assoc) {
num_di_b_bank_per_port = g_ip->out_w + tagbits;//TODO: out_w or block_sz?
num_si_b_bank_per_port = tagbits;
num_do_b_bank_per_port = g_ip->out_w + tagbits;
num_so_b_bank_per_port = g_ip->out_w;
} else {
num_di_b_bank_per_port = tagbits;
num_si_b_bank_per_port = tagbits;
num_do_b_bank_per_port = tagbits;
num_so_b_bank_per_port = int(ceil(log2(num_r_subarray)) + ceil(log2(num_subarrays)));
}
}
if ((!is_tag) && (g_ip->data_assoc > 1) && (!g_ip->fast_access)) {
number_way_select_signals_mat = g_ip->data_assoc;
}
// add ECC adjustment to all data signals that traverse on H-trees.
if (g_ip->add_ecc_b_ == true) {
num_do_b_mat += (int) (ceil(num_do_b_mat / num_bits_per_ecc_b_));
num_di_b_mat += (int) (ceil(num_di_b_mat / num_bits_per_ecc_b_));
num_di_b_subbank += (int) (ceil(num_di_b_subbank / num_bits_per_ecc_b_));
num_do_b_subbank += (int) (ceil(num_do_b_subbank / num_bits_per_ecc_b_));
num_di_b_bank_per_port += (int) (ceil(num_di_b_bank_per_port / num_bits_per_ecc_b_));
num_do_b_bank_per_port += (int) (ceil(num_do_b_bank_per_port / num_bits_per_ecc_b_));
num_so_b_mat += (int) (ceil(num_so_b_mat / num_bits_per_ecc_b_));
num_si_b_mat += (int) (ceil(num_si_b_mat / num_bits_per_ecc_b_));
num_si_b_subbank += (int) (ceil(num_si_b_subbank / num_bits_per_ecc_b_));
num_so_b_subbank += (int) (ceil(num_so_b_subbank / num_bits_per_ecc_b_));
num_si_b_bank_per_port += (int) (ceil(num_si_b_bank_per_port / num_bits_per_ecc_b_));
num_so_b_bank_per_port += (int) (ceil(num_so_b_bank_per_port / num_bits_per_ecc_b_));
}
is_valid = true;
}