blob: e49d26a0761c4fca111b7332f3400350ebfaea39 [file] [log] [blame]
# Copyright (c) 2017, 2019 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2005-2007 The Regents of The University of Michigan
# Copyright (c) 2011 Regents of the University of California
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Nathan Binkert
# Rick Strong
from m5.SimObject import *
from m5.defines import buildEnv
from m5.params import *
from m5.proxy import *
from m5.objects.DVFSHandler import *
from m5.objects.SimpleMemory import *
class MemoryMode(Enum): vals = ['invalid', 'atomic', 'timing',
'atomic_noncaching']
class System(SimObject):
type = 'System'
cxx_header = "sim/system.hh"
system_port = MasterPort("System port")
cxx_exports = [
PyBindMethod("getMemoryMode"),
PyBindMethod("setMemoryMode"),
]
memories = VectorParam.AbstractMemory(Self.all,
"All memories in the system")
mem_mode = Param.MemoryMode('atomic', "The mode the memory system is in")
thermal_model = Param.ThermalModel(NULL, "Thermal model")
thermal_components = VectorParam.SimObject([],
"A collection of all thermal components in the system.")
# When reserving memory on the host, we have the option of
# reserving swap space or not (by passing MAP_NORESERVE to
# mmap). By enabling this flag, we accommodate cases where a large
# (but sparse) memory is simulated.
mmap_using_noreserve = Param.Bool(False, "mmap the backing store " \
"without reserving swap")
# The memory ranges are to be populated when creating the system
# such that these can be passed from the I/O subsystem through an
# I/O bridge or cache
mem_ranges = VectorParam.AddrRange([], "Ranges that constitute main memory")
cache_line_size = Param.Unsigned(64, "Cache line size in bytes")
redirect_paths = VectorParam.RedirectPath([], "Path redirections")
exit_on_work_items = Param.Bool(False, "Exit from the simulation loop when "
"encountering work item annotations.")
work_item_id = Param.Int(-1, "specific work item id")
num_work_ids = Param.Int(16, "Number of distinct work item types")
work_begin_cpu_id_exit = Param.Int(-1,
"work started on specific id, now exit simulation")
work_begin_ckpt_count = Param.Counter(0,
"create checkpoint when work items begin count value is reached")
work_begin_exit_count = Param.Counter(0,
"exit simulation when work items begin count value is reached")
work_end_ckpt_count = Param.Counter(0,
"create checkpoint when work items end count value is reached")
work_end_exit_count = Param.Counter(0,
"exit simulation when work items end count value is reached")
work_cpus_ckpt_count = Param.Counter(0,
"create checkpoint when active cpu count value is reached")
init_param = Param.UInt64(0, "numerical value to pass into simulator")
boot_osflags = Param.String("a", "boot flags to pass to the kernel")
kernel = Param.String("", "file that contains the kernel code")
kernel_addr_check = Param.Bool(True,
"whether to address check on kernel (disable for baremetal)")
kernel_extras = VectorParam.String([], "Additional object files to load")
kernel_extras_addrs = VectorParam.Addr([],
"Load addresses for additional object files")
readfile = Param.String("", "file to read startup script from")
symbolfile = Param.String("", "file to get the symbols from")
load_addr_mask = Param.UInt64(0xffffffffffffffff,
"Address to mask loading binaries with, if 0, system "
"auto-calculates the mask to be the most restrictive, "
"otherwise it obeys a custom mask.")
load_offset = Param.UInt64(0, "Address to offset loading binaries with")
multi_thread = Param.Bool(False,
"Supports multi-threaded CPUs? Impacts Thread/Context IDs")
# Dynamic voltage and frequency handler for the system, disabled by default
# Provide list of domains that need to be controlled by the handler
dvfs_handler = DVFSHandler()
# SE mode doesn't use the ISA System subclasses, and so we need to set an
# ISA specific value in this class directly.
m5ops_base = Param.Addr(
0xffff0000 if buildEnv['TARGET_ISA'] == 'x86' else 0,
"Base of the 64KiB PA range used for memory-mapped m5ops. Set to 0 "
"to disable.")
if buildEnv['USE_KVM']:
kvm_vm = Param.KvmVM(NULL, 'KVM VM (i.e., shared memory domain)')