blob: d090eddd5d527b23dbf14f2d3dd2c007deb1d09f [file] [log] [blame]
/*
* Copyright (c) 2013-2014,2016 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cpu/minor/fetch2.hh"
#include <string>
#include "arch/decoder.hh"
#include "arch/utility.hh"
#include "cpu/minor/pipeline.hh"
#include "cpu/pred/bpred_unit.hh"
#include "debug/Branch.hh"
#include "debug/Fetch.hh"
#include "debug/MinorTrace.hh"
namespace Minor
{
Fetch2::Fetch2(const std::string &name,
MinorCPU &cpu_,
MinorCPUParams &params,
Latch<ForwardLineData>::Output inp_,
Latch<BranchData>::Output branchInp_,
Latch<BranchData>::Input predictionOut_,
Latch<ForwardInstData>::Input out_,
std::vector<InputBuffer<ForwardInstData>> &next_stage_input_buffer) :
Named(name),
cpu(cpu_),
inp(inp_),
branchInp(branchInp_),
predictionOut(predictionOut_),
out(out_),
nextStageReserve(next_stage_input_buffer),
outputWidth(params.decodeInputWidth),
processMoreThanOneInput(params.fetch2CycleInput),
branchPredictor(*params.branchPred),
fetchInfo(params.numThreads),
threadPriority(0)
{
if (outputWidth < 1)
fatal("%s: decodeInputWidth must be >= 1 (%d)\n", name, outputWidth);
if (params.fetch2InputBufferSize < 1) {
fatal("%s: fetch2InputBufferSize must be >= 1 (%d)\n", name,
params.fetch2InputBufferSize);
}
/* Per-thread input buffers */
for (ThreadID tid = 0; tid < params.numThreads; tid++) {
inputBuffer.push_back(
InputBuffer<ForwardLineData>(
name + ".inputBuffer" + std::to_string(tid), "lines",
params.fetch2InputBufferSize));
}
}
const ForwardLineData *
Fetch2::getInput(ThreadID tid)
{
/* Get a line from the inputBuffer to work with */
if (!inputBuffer[tid].empty()) {
return &(inputBuffer[tid].front());
} else {
return NULL;
}
}
void
Fetch2::popInput(ThreadID tid)
{
if (!inputBuffer[tid].empty()) {
inputBuffer[tid].front().freeLine();
inputBuffer[tid].pop();
}
fetchInfo[tid].inputIndex = 0;
}
void
Fetch2::dumpAllInput(ThreadID tid)
{
DPRINTF(Fetch, "Dumping whole input buffer\n");
while (!inputBuffer[tid].empty())
popInput(tid);
fetchInfo[tid].inputIndex = 0;
}
void
Fetch2::updateBranchPrediction(const BranchData &branch)
{
MinorDynInstPtr inst = branch.inst;
/* Don't even consider instructions we didn't try to predict or faults */
if (inst->isFault() || !inst->triedToPredict)
return;
switch (branch.reason) {
case BranchData::NoBranch:
/* No data to update */
break;
case BranchData::Interrupt:
/* Never try to predict interrupts */
break;
case BranchData::SuspendThread:
/* Don't need to act on suspends */
break;
case BranchData::HaltFetch:
/* Don't need to act on fetch wakeup */
break;
case BranchData::BranchPrediction:
/* Shouldn't happen. Fetch2 is the only source of
* BranchPredictions */
break;
case BranchData::UnpredictedBranch:
/* Unpredicted branch or barrier */
DPRINTF(Branch, "Unpredicted branch seen inst: %s\n", *inst);
branchPredictor.squash(inst->id.fetchSeqNum,
branch.target, true, inst->id.threadId);
// Update after squashing to accomodate O3CPU
// using the branch prediction code.
branchPredictor.update(inst->id.fetchSeqNum,
inst->id.threadId);
break;
case BranchData::CorrectlyPredictedBranch:
/* Predicted taken, was taken */
DPRINTF(Branch, "Branch predicted correctly inst: %s\n", *inst);
branchPredictor.update(inst->id.fetchSeqNum,
inst->id.threadId);
break;
case BranchData::BadlyPredictedBranch:
/* Predicted taken, not taken */
DPRINTF(Branch, "Branch mis-predicted inst: %s\n", *inst);
branchPredictor.squash(inst->id.fetchSeqNum,
branch.target /* Not used */, false, inst->id.threadId);
// Update after squashing to accomodate O3CPU
// using the branch prediction code.
branchPredictor.update(inst->id.fetchSeqNum,
inst->id.threadId);
break;
case BranchData::BadlyPredictedBranchTarget:
/* Predicted taken, was taken but to a different target */
DPRINTF(Branch, "Branch mis-predicted target inst: %s target: %s\n",
*inst, branch.target);
branchPredictor.squash(inst->id.fetchSeqNum,
branch.target, true, inst->id.threadId);
break;
}
}
void
Fetch2::predictBranch(MinorDynInstPtr inst, BranchData &branch)
{
Fetch2ThreadInfo &thread = fetchInfo[inst->id.threadId];
TheISA::PCState inst_pc = inst->pc;
assert(!inst->predictedTaken);
/* Skip non-control/sys call instructions */
if (inst->staticInst->isControl() ||
inst->staticInst->isSyscall())
{
/* Tried to predict */
inst->triedToPredict = true;
DPRINTF(Branch, "Trying to predict for inst: %s\n", *inst);
if (branchPredictor.predict(inst->staticInst,
inst->id.fetchSeqNum, inst_pc,
inst->id.threadId))
{
inst->predictedTaken = true;
inst->predictedTarget = inst_pc;
branch.target = inst_pc;
}
} else {
DPRINTF(Branch, "Not attempting prediction for inst: %s\n", *inst);
}
/* If we predict taken, set branch and update sequence numbers */
if (inst->predictedTaken) {
/* Update the predictionSeqNum and remember the streamSeqNum that it
* was associated with */
thread.expectedStreamSeqNum = inst->id.streamSeqNum;
BranchData new_branch = BranchData(BranchData::BranchPrediction,
inst->id.threadId,
inst->id.streamSeqNum, thread.predictionSeqNum + 1,
inst->predictedTarget, inst);
/* Mark with a new prediction number by the stream number of the
* instruction causing the prediction */
thread.predictionSeqNum++;
branch = new_branch;
DPRINTF(Branch, "Branch predicted taken inst: %s target: %s"
" new predictionSeqNum: %d\n",
*inst, inst->predictedTarget, thread.predictionSeqNum);
}
}
void
Fetch2::evaluate()
{
/* Push input onto appropriate input buffer */
if (!inp.outputWire->isBubble())
inputBuffer[inp.outputWire->id.threadId].setTail(*inp.outputWire);
ForwardInstData &insts_out = *out.inputWire;
BranchData prediction;
BranchData &branch_inp = *branchInp.outputWire;
assert(insts_out.isBubble());
/* React to branches from Execute to update local branch prediction
* structures */
updateBranchPrediction(branch_inp);
/* If a branch arrives, don't try and do anything about it. Only
* react to your own predictions */
if (branch_inp.isStreamChange()) {
DPRINTF(Fetch, "Dumping all input as a stream changing branch"
" has arrived\n");
dumpAllInput(branch_inp.threadId);
fetchInfo[branch_inp.threadId].havePC = false;
}
assert(insts_out.isBubble());
/* Even when blocked, clear out input lines with the wrong
* prediction sequence number */
for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
Fetch2ThreadInfo &thread = fetchInfo[tid];
thread.blocked = !nextStageReserve[tid].canReserve();
const ForwardLineData *line_in = getInput(tid);
while (line_in &&
thread.expectedStreamSeqNum == line_in->id.streamSeqNum &&
thread.predictionSeqNum != line_in->id.predictionSeqNum)
{
DPRINTF(Fetch, "Discarding line %s"
" due to predictionSeqNum mismatch (expected: %d)\n",
line_in->id, thread.predictionSeqNum);
popInput(tid);
fetchInfo[tid].havePC = false;
if (processMoreThanOneInput) {
DPRINTF(Fetch, "Wrapping\n");
line_in = getInput(tid);
} else {
line_in = NULL;
}
}
}
ThreadID tid = getScheduledThread();
DPRINTF(Fetch, "Scheduled Thread: %d\n", tid);
assert(insts_out.isBubble());
if (tid != InvalidThreadID) {
Fetch2ThreadInfo &fetch_info = fetchInfo[tid];
const ForwardLineData *line_in = getInput(tid);
unsigned int output_index = 0;
/* Pack instructions into the output while we can. This may involve
* using more than one input line. Note that lineWidth will be 0
* for faulting lines */
while (line_in &&
(line_in->isFault() ||
fetch_info.inputIndex < line_in->lineWidth) && /* More input */
output_index < outputWidth && /* More output to fill */
prediction.isBubble() /* No predicted branch */)
{
ThreadContext *thread = cpu.getContext(line_in->id.threadId);
TheISA::Decoder *decoder = thread->getDecoderPtr();
/* Discard line due to prediction sequence number being wrong but
* without the streamSeqNum number having changed */
bool discard_line =
fetch_info.expectedStreamSeqNum == line_in->id.streamSeqNum &&
fetch_info.predictionSeqNum != line_in->id.predictionSeqNum;
/* Set the PC if the stream changes. Setting havePC to false in
* a previous cycle handles all other change of flow of control
* issues */
bool set_pc = fetch_info.lastStreamSeqNum != line_in->id.streamSeqNum;
if (!discard_line && (!fetch_info.havePC || set_pc)) {
/* Set the inputIndex to be the MachInst-aligned offset
* from lineBaseAddr of the new PC value */
fetch_info.inputIndex =
(line_in->pc.instAddr() & BaseCPU::PCMask) -
line_in->lineBaseAddr;
DPRINTF(Fetch, "Setting new PC value: %s inputIndex: 0x%x"
" lineBaseAddr: 0x%x lineWidth: 0x%x\n",
line_in->pc, fetch_info.inputIndex, line_in->lineBaseAddr,
line_in->lineWidth);
fetch_info.pc = line_in->pc;
fetch_info.havePC = true;
decoder->reset();
}
/* The generated instruction. Leave as NULL if no instruction
* is to be packed into the output */
MinorDynInstPtr dyn_inst = NULL;
if (discard_line) {
/* Rest of line was from an older prediction in the same
* stream */
DPRINTF(Fetch, "Discarding line %s (from inputIndex: %d)"
" due to predictionSeqNum mismatch (expected: %d)\n",
line_in->id, fetch_info.inputIndex,
fetch_info.predictionSeqNum);
} else if (line_in->isFault()) {
/* Pack a fault as a MinorDynInst with ->fault set */
/* Make a new instruction and pick up the line, stream,
* prediction, thread ids from the incoming line */
dyn_inst = new MinorDynInst(line_in->id);
/* Fetch and prediction sequence numbers originate here */
dyn_inst->id.fetchSeqNum = fetch_info.fetchSeqNum;
dyn_inst->id.predictionSeqNum = fetch_info.predictionSeqNum;
/* To complete the set, test that exec sequence number has
* not been set */
assert(dyn_inst->id.execSeqNum == 0);
dyn_inst->pc = fetch_info.pc;
/* Pack a faulting instruction but allow other
* instructions to be generated. (Fetch2 makes no
* immediate judgement about streamSeqNum) */
dyn_inst->fault = line_in->fault;
DPRINTF(Fetch, "Fault being passed output_index: "
"%d: %s\n", output_index, dyn_inst->fault->name());
} else {
uint8_t *line = line_in->line;
/* The instruction is wholly in the line, can just
* assign */
auto inst_word = *reinterpret_cast<TheISA::MachInst *>
(line + fetch_info.inputIndex);
if (!decoder->instReady()) {
decoder->moreBytes(fetch_info.pc,
line_in->lineBaseAddr + fetch_info.inputIndex,
inst_word);
DPRINTF(Fetch, "Offering MachInst to decoder addr: 0x%x\n",
line_in->lineBaseAddr + fetch_info.inputIndex);
}
/* Maybe make the above a loop to accomodate ISAs with
* instructions longer than sizeof(MachInst) */
if (decoder->instReady()) {
/* Make a new instruction and pick up the line, stream,
* prediction, thread ids from the incoming line */
dyn_inst = new MinorDynInst(line_in->id);
/* Fetch and prediction sequence numbers originate here */
dyn_inst->id.fetchSeqNum = fetch_info.fetchSeqNum;
dyn_inst->id.predictionSeqNum = fetch_info.predictionSeqNum;
/* To complete the set, test that exec sequence number
* has not been set */
assert(dyn_inst->id.execSeqNum == 0);
/* Note that the decoder can update the given PC.
* Remember not to assign it until *after* calling
* decode */
StaticInstPtr decoded_inst = decoder->decode(fetch_info.pc);
dyn_inst->staticInst = decoded_inst;
dyn_inst->pc = fetch_info.pc;
DPRINTF(Fetch, "decoder inst %s\n", *dyn_inst);
// Collect some basic inst class stats
if (decoded_inst->isLoad())
loadInstructions++;
else if (decoded_inst->isStore())
storeInstructions++;
else if (decoded_inst->isAtomic())
amoInstructions++;
else if (decoded_inst->isVector())
vecInstructions++;
else if (decoded_inst->isFloating())
fpInstructions++;
else if (decoded_inst->isInteger())
intInstructions++;
DPRINTF(Fetch, "Instruction extracted from line %s"
" lineWidth: %d output_index: %d inputIndex: %d"
" pc: %s inst: %s\n",
line_in->id,
line_in->lineWidth, output_index, fetch_info.inputIndex,
fetch_info.pc, *dyn_inst);
#if THE_ISA == X86_ISA || THE_ISA == ARM_ISA
/* In SE mode, it's possible to branch to a microop when
* replaying faults such as page faults (or simply
* intra-microcode branches in X86). Unfortunately,
* as Minor has micro-op decomposition in a separate
* pipeline stage from instruction decomposition, the
* following advancePC (which may follow a branch with
* microPC() != 0) *must* see a fresh macroop. This
* kludge should be improved with an addition to PCState
* but I offer it in this form for the moment
*
* X86 can branch within microops so we need to deal with
* the case that, after a branch, the first un-advanced PC
* may be pointing to a microop other than 0. Once
* advanced, however, the microop number *must* be 0 */
fetch_info.pc.upc(0);
fetch_info.pc.nupc(1);
#endif
/* Advance PC for the next instruction */
TheISA::advancePC(fetch_info.pc, decoded_inst);
/* Predict any branches and issue a branch if
* necessary */
predictBranch(dyn_inst, prediction);
} else {
DPRINTF(Fetch, "Inst not ready yet\n");
}
/* Step on the pointer into the line if there's no
* complete instruction waiting */
if (decoder->needMoreBytes()) {
fetch_info.inputIndex += sizeof(TheISA::MachInst);
DPRINTF(Fetch, "Updated inputIndex value PC: %s"
" inputIndex: 0x%x lineBaseAddr: 0x%x lineWidth: 0x%x\n",
line_in->pc, fetch_info.inputIndex, line_in->lineBaseAddr,
line_in->lineWidth);
}
}
if (dyn_inst) {
/* Step to next sequence number */
fetch_info.fetchSeqNum++;
/* Correctly size the output before writing */
if (output_index == 0) {
insts_out.resize(outputWidth);
}
/* Pack the generated dynamic instruction into the output */
insts_out.insts[output_index] = dyn_inst;
output_index++;
/* Output MinorTrace instruction info for
* pre-microop decomposition macroops */
if (DTRACE(MinorTrace) && !dyn_inst->isFault() &&
dyn_inst->staticInst->isMacroop())
{
dyn_inst->minorTraceInst(*this);
}
}
/* Remember the streamSeqNum of this line so we can tell when
* we change stream */
fetch_info.lastStreamSeqNum = line_in->id.streamSeqNum;
/* Asked to discard line or there was a branch or fault */
if (!prediction.isBubble() || /* The remains of a
line with a prediction in it */
line_in->isFault() /* A line which is just a fault */)
{
DPRINTF(Fetch, "Discarding all input on branch/fault\n");
dumpAllInput(tid);
fetch_info.havePC = false;
line_in = NULL;
} else if (discard_line) {
/* Just discard one line, one's behind it may have new
* stream sequence numbers. There's a DPRINTF above
* for this event */
popInput(tid);
fetch_info.havePC = false;
line_in = NULL;
} else if (fetch_info.inputIndex == line_in->lineWidth) {
/* Got to end of a line, pop the line but keep PC
* in case this is a line-wrapping inst. */
popInput(tid);
line_in = NULL;
}
if (!line_in && processMoreThanOneInput) {
DPRINTF(Fetch, "Wrapping\n");
line_in = getInput(tid);
}
}
/* The rest of the output (if any) should already have been packed
* with bubble instructions by insts_out's initialisation */
}
if (tid == InvalidThreadID) {
assert(insts_out.isBubble());
}
/** Reserve a slot in the next stage and output data */
*predictionOut.inputWire = prediction;
/* If we generated output, reserve space for the result in the next stage
* and mark the stage as being active this cycle */
if (!insts_out.isBubble()) {
/* Note activity of following buffer */
cpu.activityRecorder->activity();
insts_out.threadId = tid;
nextStageReserve[tid].reserve();
}
/* If we still have input to process and somewhere to put it,
* mark stage as active */
for (ThreadID i = 0; i < cpu.numThreads; i++)
{
if (getInput(i) && nextStageReserve[i].canReserve()) {
cpu.activityRecorder->activateStage(Pipeline::Fetch2StageId);
break;
}
}
/* Make sure the input (if any left) is pushed */
if (!inp.outputWire->isBubble())
inputBuffer[inp.outputWire->id.threadId].pushTail();
}
inline ThreadID
Fetch2::getScheduledThread()
{
/* Select thread via policy. */
std::vector<ThreadID> priority_list;
switch (cpu.threadPolicy) {
case Enums::SingleThreaded:
priority_list.push_back(0);
break;
case Enums::RoundRobin:
priority_list = cpu.roundRobinPriority(threadPriority);
break;
case Enums::Random:
priority_list = cpu.randomPriority();
break;
default:
panic("Unknown fetch policy");
}
for (auto tid : priority_list) {
if (getInput(tid) && !fetchInfo[tid].blocked) {
threadPriority = tid;
return tid;
}
}
return InvalidThreadID;
}
bool
Fetch2::isDrained()
{
for (const auto &buffer : inputBuffer) {
if (!buffer.empty())
return false;
}
return (*inp.outputWire).isBubble() &&
(*predictionOut.inputWire).isBubble();
}
void
Fetch2::regStats()
{
using namespace Stats;
intInstructions
.name(name() + ".int_instructions")
.desc("Number of integer instructions successfully decoded")
.flags(total);
fpInstructions
.name(name() + ".fp_instructions")
.desc("Number of floating point instructions successfully decoded")
.flags(total);
vecInstructions
.name(name() + ".vec_instructions")
.desc("Number of SIMD instructions successfully decoded")
.flags(total);
loadInstructions
.name(name() + ".load_instructions")
.desc("Number of memory load instructions successfully decoded")
.flags(total);
storeInstructions
.name(name() + ".store_instructions")
.desc("Number of memory store instructions successfully decoded")
.flags(total);
amoInstructions
.name(name() + ".amo_instructions")
.desc("Number of memory atomic instructions successfully decoded")
.flags(total);
}
void
Fetch2::minorTrace() const
{
std::ostringstream data;
if (fetchInfo[0].blocked)
data << 'B';
else
(*out.inputWire).reportData(data);
MINORTRACE("inputIndex=%d havePC=%d predictionSeqNum=%d insts=%s\n",
fetchInfo[0].inputIndex, fetchInfo[0].havePC, fetchInfo[0].predictionSeqNum, data.str());
inputBuffer[0].minorTrace();
}
}