| /* |
| tests/test_sequences_and_iterators.cpp -- supporting Pythons' sequence protocol, iterators, |
| etc. |
| |
| Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> |
| |
| All rights reserved. Use of this source code is governed by a |
| BSD-style license that can be found in the LICENSE file. |
| */ |
| |
| #include "pybind11_tests.h" |
| #include "constructor_stats.h" |
| #include <pybind11/operators.h> |
| #include <pybind11/stl.h> |
| |
| #include <algorithm> |
| |
| template<typename T> |
| class NonZeroIterator { |
| const T* ptr_; |
| public: |
| NonZeroIterator(const T* ptr) : ptr_(ptr) {} |
| const T& operator*() const { return *ptr_; } |
| NonZeroIterator& operator++() { ++ptr_; return *this; } |
| }; |
| |
| class NonZeroSentinel {}; |
| |
| template<typename A, typename B> |
| bool operator==(const NonZeroIterator<std::pair<A, B>>& it, const NonZeroSentinel&) { |
| return !(*it).first || !(*it).second; |
| } |
| |
| template <typename PythonType> |
| py::list test_random_access_iterator(PythonType x) { |
| if (x.size() < 5) |
| throw py::value_error("Please provide at least 5 elements for testing."); |
| |
| auto checks = py::list(); |
| auto assert_equal = [&checks](py::handle a, py::handle b) { |
| auto result = PyObject_RichCompareBool(a.ptr(), b.ptr(), Py_EQ); |
| if (result == -1) { throw py::error_already_set(); } |
| checks.append(result != 0); |
| }; |
| |
| auto it = x.begin(); |
| assert_equal(x[0], *it); |
| assert_equal(x[0], it[0]); |
| assert_equal(x[1], it[1]); |
| |
| assert_equal(x[1], *(++it)); |
| assert_equal(x[1], *(it++)); |
| assert_equal(x[2], *it); |
| assert_equal(x[3], *(it += 1)); |
| assert_equal(x[2], *(--it)); |
| assert_equal(x[2], *(it--)); |
| assert_equal(x[1], *it); |
| assert_equal(x[0], *(it -= 1)); |
| |
| assert_equal(it->attr("real"), x[0].attr("real")); |
| assert_equal((it + 1)->attr("real"), x[1].attr("real")); |
| |
| assert_equal(x[1], *(it + 1)); |
| assert_equal(x[1], *(1 + it)); |
| it += 3; |
| assert_equal(x[1], *(it - 2)); |
| |
| checks.append(static_cast<std::size_t>(x.end() - x.begin()) == x.size()); |
| checks.append((x.begin() + static_cast<std::ptrdiff_t>(x.size())) == x.end()); |
| checks.append(x.begin() < x.end()); |
| |
| return checks; |
| } |
| |
| TEST_SUBMODULE(sequences_and_iterators, m) { |
| // test_sliceable |
| class Sliceable{ |
| public: |
| Sliceable(int n): size(n) {} |
| int start,stop,step; |
| int size; |
| }; |
| py::class_<Sliceable>(m,"Sliceable") |
| .def(py::init<int>()) |
| .def("__getitem__",[](const Sliceable &s, py::slice slice) { |
| py::ssize_t start, stop, step, slicelength; |
| if (!slice.compute(s.size, &start, &stop, &step, &slicelength)) |
| throw py::error_already_set(); |
| int istart = static_cast<int>(start); |
| int istop = static_cast<int>(stop); |
| int istep = static_cast<int>(step); |
| return std::make_tuple(istart,istop,istep); |
| }) |
| ; |
| |
| // test_sequence |
| class Sequence { |
| public: |
| Sequence(size_t size) : m_size(size) { |
| print_created(this, "of size", m_size); |
| m_data = new float[size]; |
| memset(m_data, 0, sizeof(float) * size); |
| } |
| Sequence(const std::vector<float> &value) : m_size(value.size()) { |
| print_created(this, "of size", m_size, "from std::vector"); |
| m_data = new float[m_size]; |
| memcpy(m_data, &value[0], sizeof(float) * m_size); |
| } |
| Sequence(const Sequence &s) : m_size(s.m_size) { |
| print_copy_created(this); |
| m_data = new float[m_size]; |
| memcpy(m_data, s.m_data, sizeof(float)*m_size); |
| } |
| Sequence(Sequence &&s) : m_size(s.m_size), m_data(s.m_data) { |
| print_move_created(this); |
| s.m_size = 0; |
| s.m_data = nullptr; |
| } |
| |
| ~Sequence() { print_destroyed(this); delete[] m_data; } |
| |
| Sequence &operator=(const Sequence &s) { |
| if (&s != this) { |
| delete[] m_data; |
| m_size = s.m_size; |
| m_data = new float[m_size]; |
| memcpy(m_data, s.m_data, sizeof(float)*m_size); |
| } |
| print_copy_assigned(this); |
| return *this; |
| } |
| |
| Sequence &operator=(Sequence &&s) { |
| if (&s != this) { |
| delete[] m_data; |
| m_size = s.m_size; |
| m_data = s.m_data; |
| s.m_size = 0; |
| s.m_data = nullptr; |
| } |
| print_move_assigned(this); |
| return *this; |
| } |
| |
| bool operator==(const Sequence &s) const { |
| if (m_size != s.size()) return false; |
| for (size_t i = 0; i < m_size; ++i) |
| if (m_data[i] != s[i]) |
| return false; |
| return true; |
| } |
| bool operator!=(const Sequence &s) const { return !operator==(s); } |
| |
| float operator[](size_t index) const { return m_data[index]; } |
| float &operator[](size_t index) { return m_data[index]; } |
| |
| bool contains(float v) const { |
| for (size_t i = 0; i < m_size; ++i) |
| if (v == m_data[i]) |
| return true; |
| return false; |
| } |
| |
| Sequence reversed() const { |
| Sequence result(m_size); |
| for (size_t i = 0; i < m_size; ++i) |
| result[m_size - i - 1] = m_data[i]; |
| return result; |
| } |
| |
| size_t size() const { return m_size; } |
| |
| const float *begin() const { return m_data; } |
| const float *end() const { return m_data+m_size; } |
| |
| private: |
| size_t m_size; |
| float *m_data; |
| }; |
| py::class_<Sequence>(m, "Sequence") |
| .def(py::init<size_t>()) |
| .def(py::init<const std::vector<float>&>()) |
| /// Bare bones interface |
| .def("__getitem__", [](const Sequence &s, size_t i) { |
| if (i >= s.size()) throw py::index_error(); |
| return s[i]; |
| }) |
| .def("__setitem__", [](Sequence &s, size_t i, float v) { |
| if (i >= s.size()) throw py::index_error(); |
| s[i] = v; |
| }) |
| .def("__len__", &Sequence::size) |
| /// Optional sequence protocol operations |
| .def("__iter__", [](const Sequence &s) { return py::make_iterator(s.begin(), s.end()); }, |
| py::keep_alive<0, 1>() /* Essential: keep object alive while iterator exists */) |
| .def("__contains__", [](const Sequence &s, float v) { return s.contains(v); }) |
| .def("__reversed__", [](const Sequence &s) -> Sequence { return s.reversed(); }) |
| /// Slicing protocol (optional) |
| .def("__getitem__", [](const Sequence &s, py::slice slice) -> Sequence* { |
| size_t start, stop, step, slicelength; |
| if (!slice.compute(s.size(), &start, &stop, &step, &slicelength)) |
| throw py::error_already_set(); |
| auto *seq = new Sequence(slicelength); |
| for (size_t i = 0; i < slicelength; ++i) { |
| (*seq)[i] = s[start]; start += step; |
| } |
| return seq; |
| }) |
| .def("__setitem__", [](Sequence &s, py::slice slice, const Sequence &value) { |
| size_t start, stop, step, slicelength; |
| if (!slice.compute(s.size(), &start, &stop, &step, &slicelength)) |
| throw py::error_already_set(); |
| if (slicelength != value.size()) |
| throw std::runtime_error("Left and right hand size of slice assignment have different sizes!"); |
| for (size_t i = 0; i < slicelength; ++i) { |
| s[start] = value[i]; start += step; |
| } |
| }) |
| /// Comparisons |
| .def(py::self == py::self) |
| .def(py::self != py::self) |
| // Could also define py::self + py::self for concatenation, etc. |
| ; |
| |
| // test_map_iterator |
| // Interface of a map-like object that isn't (directly) an unordered_map, but provides some basic |
| // map-like functionality. |
| class StringMap { |
| public: |
| StringMap() = default; |
| StringMap(std::unordered_map<std::string, std::string> init) |
| : map(std::move(init)) {} |
| |
| void set(std::string key, std::string val) { map[key] = val; } |
| std::string get(std::string key) const { return map.at(key); } |
| size_t size() const { return map.size(); } |
| private: |
| std::unordered_map<std::string, std::string> map; |
| public: |
| decltype(map.cbegin()) begin() const { return map.cbegin(); } |
| decltype(map.cend()) end() const { return map.cend(); } |
| }; |
| py::class_<StringMap>(m, "StringMap") |
| .def(py::init<>()) |
| .def(py::init<std::unordered_map<std::string, std::string>>()) |
| .def("__getitem__", [](const StringMap &map, std::string key) { |
| try { return map.get(key); } |
| catch (const std::out_of_range&) { |
| throw py::key_error("key '" + key + "' does not exist"); |
| } |
| }) |
| .def("__setitem__", &StringMap::set) |
| .def("__len__", &StringMap::size) |
| .def("__iter__", [](const StringMap &map) { return py::make_key_iterator(map.begin(), map.end()); }, |
| py::keep_alive<0, 1>()) |
| .def("items", [](const StringMap &map) { return py::make_iterator(map.begin(), map.end()); }, |
| py::keep_alive<0, 1>()) |
| ; |
| |
| // test_generalized_iterators |
| class IntPairs { |
| public: |
| IntPairs(std::vector<std::pair<int, int>> data) : data_(std::move(data)) {} |
| const std::pair<int, int>* begin() const { return data_.data(); } |
| private: |
| std::vector<std::pair<int, int>> data_; |
| }; |
| py::class_<IntPairs>(m, "IntPairs") |
| .def(py::init<std::vector<std::pair<int, int>>>()) |
| .def("nonzero", [](const IntPairs& s) { |
| return py::make_iterator(NonZeroIterator<std::pair<int, int>>(s.begin()), NonZeroSentinel()); |
| }, py::keep_alive<0, 1>()) |
| .def("nonzero_keys", [](const IntPairs& s) { |
| return py::make_key_iterator(NonZeroIterator<std::pair<int, int>>(s.begin()), NonZeroSentinel()); |
| }, py::keep_alive<0, 1>()) |
| ; |
| |
| |
| #if 0 |
| // Obsolete: special data structure for exposing custom iterator types to python |
| // kept here for illustrative purposes because there might be some use cases which |
| // are not covered by the much simpler py::make_iterator |
| |
| struct PySequenceIterator { |
| PySequenceIterator(const Sequence &seq, py::object ref) : seq(seq), ref(ref) { } |
| |
| float next() { |
| if (index == seq.size()) |
| throw py::stop_iteration(); |
| return seq[index++]; |
| } |
| |
| const Sequence &seq; |
| py::object ref; // keep a reference |
| size_t index = 0; |
| }; |
| |
| py::class_<PySequenceIterator>(seq, "Iterator") |
| .def("__iter__", [](PySequenceIterator &it) -> PySequenceIterator& { return it; }) |
| .def("__next__", &PySequenceIterator::next); |
| |
| On the actual Sequence object, the iterator would be constructed as follows: |
| .def("__iter__", [](py::object s) { return PySequenceIterator(s.cast<const Sequence &>(), s); }) |
| #endif |
| |
| // test_python_iterator_in_cpp |
| m.def("object_to_list", [](py::object o) { |
| auto l = py::list(); |
| for (auto item : o) { |
| l.append(item); |
| } |
| return l; |
| }); |
| |
| m.def("iterator_to_list", [](py::iterator it) { |
| auto l = py::list(); |
| while (it != py::iterator::sentinel()) { |
| l.append(*it); |
| ++it; |
| } |
| return l; |
| }); |
| |
| // test_sequence_length: check that Python sequences can be converted to py::sequence. |
| m.def("sequence_length", [](py::sequence seq) { return seq.size(); }); |
| |
| // Make sure that py::iterator works with std algorithms |
| m.def("count_none", [](py::object o) { |
| return std::count_if(o.begin(), o.end(), [](py::handle h) { return h.is_none(); }); |
| }); |
| |
| m.def("find_none", [](py::object o) { |
| auto it = std::find_if(o.begin(), o.end(), [](py::handle h) { return h.is_none(); }); |
| return it->is_none(); |
| }); |
| |
| m.def("count_nonzeros", [](py::dict d) { |
| return std::count_if(d.begin(), d.end(), [](std::pair<py::handle, py::handle> p) { |
| return p.second.cast<int>() != 0; |
| }); |
| }); |
| |
| m.def("tuple_iterator", &test_random_access_iterator<py::tuple>); |
| m.def("list_iterator", &test_random_access_iterator<py::list>); |
| m.def("sequence_iterator", &test_random_access_iterator<py::sequence>); |
| |
| // test_iterator_passthrough |
| // #181: iterator passthrough did not compile |
| m.def("iterator_passthrough", [](py::iterator s) -> py::iterator { |
| return py::make_iterator(std::begin(s), std::end(s)); |
| }); |
| |
| // test_iterator_rvp |
| // #388: Can't make iterators via make_iterator() with different r/v policies |
| static std::vector<int> list = { 1, 2, 3 }; |
| m.def("make_iterator_1", []() { return py::make_iterator<py::return_value_policy::copy>(list); }); |
| m.def("make_iterator_2", []() { return py::make_iterator<py::return_value_policy::automatic>(list); }); |
| } |