| /* |
| pybind11/std_bind.h: Binding generators for STL data types |
| |
| Copyright (c) 2016 Sergey Lyskov and Wenzel Jakob |
| |
| All rights reserved. Use of this source code is governed by a |
| BSD-style license that can be found in the LICENSE file. |
| */ |
| |
| #pragma once |
| |
| #include "detail/common.h" |
| #include "operators.h" |
| |
| #include <algorithm> |
| #include <sstream> |
| |
| PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) |
| PYBIND11_NAMESPACE_BEGIN(detail) |
| |
| /* SFINAE helper class used by 'is_comparable */ |
| template <typename T> struct container_traits { |
| template <typename T2> static std::true_type test_comparable(decltype(std::declval<const T2 &>() == std::declval<const T2 &>())*); |
| template <typename T2> static std::false_type test_comparable(...); |
| template <typename T2> static std::true_type test_value(typename T2::value_type *); |
| template <typename T2> static std::false_type test_value(...); |
| template <typename T2> static std::true_type test_pair(typename T2::first_type *, typename T2::second_type *); |
| template <typename T2> static std::false_type test_pair(...); |
| |
| static constexpr const bool is_comparable = std::is_same<std::true_type, decltype(test_comparable<T>(nullptr))>::value; |
| static constexpr const bool is_pair = std::is_same<std::true_type, decltype(test_pair<T>(nullptr, nullptr))>::value; |
| static constexpr const bool is_vector = std::is_same<std::true_type, decltype(test_value<T>(nullptr))>::value; |
| static constexpr const bool is_element = !is_pair && !is_vector; |
| }; |
| |
| /* Default: is_comparable -> std::false_type */ |
| template <typename T, typename SFINAE = void> |
| struct is_comparable : std::false_type { }; |
| |
| /* For non-map data structures, check whether operator== can be instantiated */ |
| template <typename T> |
| struct is_comparable< |
| T, enable_if_t<container_traits<T>::is_element && |
| container_traits<T>::is_comparable>> |
| : std::true_type { }; |
| |
| /* For a vector/map data structure, recursively check the value type (which is std::pair for maps) */ |
| template <typename T> |
| struct is_comparable<T, enable_if_t<container_traits<T>::is_vector>> { |
| static constexpr const bool value = |
| is_comparable<typename T::value_type>::value; |
| }; |
| |
| /* For pairs, recursively check the two data types */ |
| template <typename T> |
| struct is_comparable<T, enable_if_t<container_traits<T>::is_pair>> { |
| static constexpr const bool value = |
| is_comparable<typename T::first_type>::value && |
| is_comparable<typename T::second_type>::value; |
| }; |
| |
| /* Fallback functions */ |
| template <typename, typename, typename... Args> void vector_if_copy_constructible(const Args &...) { } |
| template <typename, typename, typename... Args> void vector_if_equal_operator(const Args &...) { } |
| template <typename, typename, typename... Args> void vector_if_insertion_operator(const Args &...) { } |
| template <typename, typename, typename... Args> void vector_modifiers(const Args &...) { } |
| |
| template<typename Vector, typename Class_> |
| void vector_if_copy_constructible(enable_if_t<is_copy_constructible<Vector>::value, Class_> &cl) { |
| cl.def(init<const Vector &>(), "Copy constructor"); |
| } |
| |
| template<typename Vector, typename Class_> |
| void vector_if_equal_operator(enable_if_t<is_comparable<Vector>::value, Class_> &cl) { |
| using T = typename Vector::value_type; |
| |
| cl.def(self == self); |
| cl.def(self != self); |
| |
| cl.def("count", |
| [](const Vector &v, const T &x) { |
| return std::count(v.begin(), v.end(), x); |
| }, |
| arg("x"), |
| "Return the number of times ``x`` appears in the list" |
| ); |
| |
| cl.def("remove", [](Vector &v, const T &x) { |
| auto p = std::find(v.begin(), v.end(), x); |
| if (p != v.end()) |
| v.erase(p); |
| else |
| throw value_error(); |
| }, |
| arg("x"), |
| "Remove the first item from the list whose value is x. " |
| "It is an error if there is no such item." |
| ); |
| |
| cl.def("__contains__", |
| [](const Vector &v, const T &x) { |
| return std::find(v.begin(), v.end(), x) != v.end(); |
| }, |
| arg("x"), |
| "Return true the container contains ``x``" |
| ); |
| } |
| |
| // Vector modifiers -- requires a copyable vector_type: |
| // (Technically, some of these (pop and __delitem__) don't actually require copyability, but it seems |
| // silly to allow deletion but not insertion, so include them here too.) |
| template <typename Vector, typename Class_> |
| void vector_modifiers(enable_if_t<is_copy_constructible<typename Vector::value_type>::value, Class_> &cl) { |
| using T = typename Vector::value_type; |
| using SizeType = typename Vector::size_type; |
| using DiffType = typename Vector::difference_type; |
| |
| auto wrap_i = [](DiffType i, SizeType n) { |
| if (i < 0) |
| i += n; |
| if (i < 0 || (SizeType)i >= n) |
| throw index_error(); |
| return i; |
| }; |
| |
| cl.def("append", |
| [](Vector &v, const T &value) { v.push_back(value); }, |
| arg("x"), |
| "Add an item to the end of the list"); |
| |
| cl.def(init([](const iterable &it) { |
| auto v = std::unique_ptr<Vector>(new Vector()); |
| v->reserve(len_hint(it)); |
| for (handle h : it) |
| v->push_back(h.cast<T>()); |
| return v.release(); |
| })); |
| |
| cl.def("clear", |
| [](Vector &v) { |
| v.clear(); |
| }, |
| "Clear the contents" |
| ); |
| |
| cl.def("extend", |
| [](Vector &v, const Vector &src) { |
| v.insert(v.end(), src.begin(), src.end()); |
| }, |
| arg("L"), |
| "Extend the list by appending all the items in the given list" |
| ); |
| |
| cl.def( |
| "extend", |
| [](Vector &v, const iterable &it) { |
| const size_t old_size = v.size(); |
| v.reserve(old_size + len_hint(it)); |
| try { |
| for (handle h : it) { |
| v.push_back(h.cast<T>()); |
| } |
| } catch (const cast_error &) { |
| v.erase(v.begin() + static_cast<typename Vector::difference_type>(old_size), |
| v.end()); |
| try { |
| v.shrink_to_fit(); |
| } catch (const std::exception &) { |
| // Do nothing |
| } |
| throw; |
| } |
| }, |
| arg("L"), |
| "Extend the list by appending all the items in the given list"); |
| |
| cl.def("insert", |
| [](Vector &v, DiffType i, const T &x) { |
| // Can't use wrap_i; i == v.size() is OK |
| if (i < 0) |
| i += v.size(); |
| if (i < 0 || (SizeType)i > v.size()) |
| throw index_error(); |
| v.insert(v.begin() + i, x); |
| }, |
| arg("i") , arg("x"), |
| "Insert an item at a given position." |
| ); |
| |
| cl.def("pop", |
| [](Vector &v) { |
| if (v.empty()) |
| throw index_error(); |
| T t = std::move(v.back()); |
| v.pop_back(); |
| return t; |
| }, |
| "Remove and return the last item" |
| ); |
| |
| cl.def("pop", |
| [wrap_i](Vector &v, DiffType i) { |
| i = wrap_i(i, v.size()); |
| T t = std::move(v[(SizeType) i]); |
| v.erase(std::next(v.begin(), i)); |
| return t; |
| }, |
| arg("i"), |
| "Remove and return the item at index ``i``" |
| ); |
| |
| cl.def("__setitem__", |
| [wrap_i](Vector &v, DiffType i, const T &t) { |
| i = wrap_i(i, v.size()); |
| v[(SizeType)i] = t; |
| } |
| ); |
| |
| /// Slicing protocol |
| cl.def( |
| "__getitem__", |
| [](const Vector &v, slice slice) -> Vector * { |
| size_t start = 0, stop = 0, step = 0, slicelength = 0; |
| |
| if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) |
| throw error_already_set(); |
| |
| auto *seq = new Vector(); |
| seq->reserve((size_t) slicelength); |
| |
| for (size_t i=0; i<slicelength; ++i) { |
| seq->push_back(v[start]); |
| start += step; |
| } |
| return seq; |
| }, |
| arg("s"), |
| "Retrieve list elements using a slice object"); |
| |
| cl.def( |
| "__setitem__", |
| [](Vector &v, slice slice, const Vector &value) { |
| size_t start = 0, stop = 0, step = 0, slicelength = 0; |
| if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) |
| throw error_already_set(); |
| |
| if (slicelength != value.size()) |
| throw std::runtime_error("Left and right hand size of slice assignment have different sizes!"); |
| |
| for (size_t i=0; i<slicelength; ++i) { |
| v[start] = value[i]; |
| start += step; |
| } |
| }, |
| "Assign list elements using a slice object"); |
| |
| cl.def("__delitem__", |
| [wrap_i](Vector &v, DiffType i) { |
| i = wrap_i(i, v.size()); |
| v.erase(v.begin() + i); |
| }, |
| "Delete the list elements at index ``i``" |
| ); |
| |
| cl.def( |
| "__delitem__", |
| [](Vector &v, slice slice) { |
| size_t start = 0, stop = 0, step = 0, slicelength = 0; |
| |
| if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) |
| throw error_already_set(); |
| |
| if (step == 1 && false) { |
| v.erase(v.begin() + (DiffType) start, v.begin() + DiffType(start + slicelength)); |
| } else { |
| for (size_t i = 0; i < slicelength; ++i) { |
| v.erase(v.begin() + DiffType(start)); |
| start += step - 1; |
| } |
| } |
| }, |
| "Delete list elements using a slice object"); |
| } |
| |
| // If the type has an operator[] that doesn't return a reference (most notably std::vector<bool>), |
| // we have to access by copying; otherwise we return by reference. |
| template <typename Vector> using vector_needs_copy = negation< |
| std::is_same<decltype(std::declval<Vector>()[typename Vector::size_type()]), typename Vector::value_type &>>; |
| |
| // The usual case: access and iterate by reference |
| template <typename Vector, typename Class_> |
| void vector_accessor(enable_if_t<!vector_needs_copy<Vector>::value, Class_> &cl) { |
| using T = typename Vector::value_type; |
| using SizeType = typename Vector::size_type; |
| using DiffType = typename Vector::difference_type; |
| using ItType = typename Vector::iterator; |
| |
| auto wrap_i = [](DiffType i, SizeType n) { |
| if (i < 0) |
| i += n; |
| if (i < 0 || (SizeType)i >= n) |
| throw index_error(); |
| return i; |
| }; |
| |
| cl.def("__getitem__", |
| [wrap_i](Vector &v, DiffType i) -> T & { |
| i = wrap_i(i, v.size()); |
| return v[(SizeType)i]; |
| }, |
| return_value_policy::reference_internal // ref + keepalive |
| ); |
| |
| cl.def("__iter__", |
| [](Vector &v) { |
| return make_iterator< |
| return_value_policy::reference_internal, ItType, ItType, T&>( |
| v.begin(), v.end()); |
| }, |
| keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */ |
| ); |
| } |
| |
| // The case for special objects, like std::vector<bool>, that have to be returned-by-copy: |
| template <typename Vector, typename Class_> |
| void vector_accessor(enable_if_t<vector_needs_copy<Vector>::value, Class_> &cl) { |
| using T = typename Vector::value_type; |
| using SizeType = typename Vector::size_type; |
| using DiffType = typename Vector::difference_type; |
| using ItType = typename Vector::iterator; |
| cl.def("__getitem__", |
| [](const Vector &v, DiffType i) -> T { |
| if (i < 0 && (i += v.size()) < 0) |
| throw index_error(); |
| if ((SizeType)i >= v.size()) |
| throw index_error(); |
| return v[(SizeType)i]; |
| } |
| ); |
| |
| cl.def("__iter__", |
| [](Vector &v) { |
| return make_iterator< |
| return_value_policy::copy, ItType, ItType, T>( |
| v.begin(), v.end()); |
| }, |
| keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */ |
| ); |
| } |
| |
| template <typename Vector, typename Class_> auto vector_if_insertion_operator(Class_ &cl, std::string const &name) |
| -> decltype(std::declval<std::ostream&>() << std::declval<typename Vector::value_type>(), void()) { |
| using size_type = typename Vector::size_type; |
| |
| cl.def("__repr__", |
| [name](Vector &v) { |
| std::ostringstream s; |
| s << name << '['; |
| for (size_type i=0; i < v.size(); ++i) { |
| s << v[i]; |
| if (i != v.size() - 1) |
| s << ", "; |
| } |
| s << ']'; |
| return s.str(); |
| }, |
| "Return the canonical string representation of this list." |
| ); |
| } |
| |
| // Provide the buffer interface for vectors if we have data() and we have a format for it |
| // GCC seems to have "void std::vector<bool>::data()" - doing SFINAE on the existence of data() is insufficient, we need to check it returns an appropriate pointer |
| template <typename Vector, typename = void> |
| struct vector_has_data_and_format : std::false_type {}; |
| template <typename Vector> |
| struct vector_has_data_and_format<Vector, enable_if_t<std::is_same<decltype(format_descriptor<typename Vector::value_type>::format(), std::declval<Vector>().data()), typename Vector::value_type*>::value>> : std::true_type {}; |
| |
| // [workaround(intel)] Separate function required here |
| // Workaround as the Intel compiler does not compile the enable_if_t part below |
| // (tested with icc (ICC) 2021.1 Beta 20200827) |
| template <typename... Args> |
| constexpr bool args_any_are_buffer() { |
| return detail::any_of<std::is_same<Args, buffer_protocol>...>::value; |
| } |
| |
| // [workaround(intel)] Separate function required here |
| // [workaround(msvc)] Can't use constexpr bool in return type |
| |
| // Add the buffer interface to a vector |
| template <typename Vector, typename Class_, typename... Args> |
| void vector_buffer_impl(Class_& cl, std::true_type) { |
| using T = typename Vector::value_type; |
| |
| static_assert(vector_has_data_and_format<Vector>::value, "There is not an appropriate format descriptor for this vector"); |
| |
| // numpy.h declares this for arbitrary types, but it may raise an exception and crash hard at runtime if PYBIND11_NUMPY_DTYPE hasn't been called, so check here |
| format_descriptor<T>::format(); |
| |
| cl.def_buffer([](Vector& v) -> buffer_info { |
| return buffer_info(v.data(), static_cast<ssize_t>(sizeof(T)), format_descriptor<T>::format(), 1, {v.size()}, {sizeof(T)}); |
| }); |
| |
| cl.def(init([](const buffer &buf) { |
| auto info = buf.request(); |
| if (info.ndim != 1 || info.strides[0] % static_cast<ssize_t>(sizeof(T))) |
| throw type_error("Only valid 1D buffers can be copied to a vector"); |
| if (!detail::compare_buffer_info<T>::compare(info) || (ssize_t) sizeof(T) != info.itemsize) |
| throw type_error("Format mismatch (Python: " + info.format + " C++: " + format_descriptor<T>::format() + ")"); |
| |
| T *p = static_cast<T*>(info.ptr); |
| ssize_t step = info.strides[0] / static_cast<ssize_t>(sizeof(T)); |
| T *end = p + info.shape[0] * step; |
| if (step == 1) { |
| return Vector(p, end); |
| } |
| Vector vec; |
| vec.reserve((size_t) info.shape[0]); |
| for (; p != end; p += step) |
| vec.push_back(*p); |
| return vec; |
| |
| })); |
| |
| return; |
| } |
| |
| template <typename Vector, typename Class_, typename... Args> |
| void vector_buffer_impl(Class_&, std::false_type) {} |
| |
| template <typename Vector, typename Class_, typename... Args> |
| void vector_buffer(Class_& cl) { |
| vector_buffer_impl<Vector, Class_, Args...>(cl, detail::any_of<std::is_same<Args, buffer_protocol>...>{}); |
| } |
| |
| PYBIND11_NAMESPACE_END(detail) |
| |
| // |
| // std::vector |
| // |
| template <typename Vector, typename holder_type = std::unique_ptr<Vector>, typename... Args> |
| class_<Vector, holder_type> bind_vector(handle scope, std::string const &name, Args&&... args) { |
| using Class_ = class_<Vector, holder_type>; |
| |
| // If the value_type is unregistered (e.g. a converting type) or is itself registered |
| // module-local then make the vector binding module-local as well: |
| using vtype = typename Vector::value_type; |
| auto vtype_info = detail::get_type_info(typeid(vtype)); |
| bool local = !vtype_info || vtype_info->module_local; |
| |
| Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...); |
| |
| // Declare the buffer interface if a buffer_protocol() is passed in |
| detail::vector_buffer<Vector, Class_, Args...>(cl); |
| |
| cl.def(init<>()); |
| |
| // Register copy constructor (if possible) |
| detail::vector_if_copy_constructible<Vector, Class_>(cl); |
| |
| // Register comparison-related operators and functions (if possible) |
| detail::vector_if_equal_operator<Vector, Class_>(cl); |
| |
| // Register stream insertion operator (if possible) |
| detail::vector_if_insertion_operator<Vector, Class_>(cl, name); |
| |
| // Modifiers require copyable vector value type |
| detail::vector_modifiers<Vector, Class_>(cl); |
| |
| // Accessor and iterator; return by value if copyable, otherwise we return by ref + keep-alive |
| detail::vector_accessor<Vector, Class_>(cl); |
| |
| cl.def("__bool__", |
| [](const Vector &v) -> bool { |
| return !v.empty(); |
| }, |
| "Check whether the list is nonempty" |
| ); |
| |
| cl.def("__len__", &Vector::size); |
| |
| |
| |
| |
| #if 0 |
| // C++ style functions deprecated, leaving it here as an example |
| cl.def(init<size_type>()); |
| |
| cl.def("resize", |
| (void (Vector::*) (size_type count)) & Vector::resize, |
| "changes the number of elements stored"); |
| |
| cl.def("erase", |
| [](Vector &v, SizeType i) { |
| if (i >= v.size()) |
| throw index_error(); |
| v.erase(v.begin() + i); |
| }, "erases element at index ``i``"); |
| |
| cl.def("empty", &Vector::empty, "checks whether the container is empty"); |
| cl.def("size", &Vector::size, "returns the number of elements"); |
| cl.def("push_back", (void (Vector::*)(const T&)) &Vector::push_back, "adds an element to the end"); |
| cl.def("pop_back", &Vector::pop_back, "removes the last element"); |
| |
| cl.def("max_size", &Vector::max_size, "returns the maximum possible number of elements"); |
| cl.def("reserve", &Vector::reserve, "reserves storage"); |
| cl.def("capacity", &Vector::capacity, "returns the number of elements that can be held in currently allocated storage"); |
| cl.def("shrink_to_fit", &Vector::shrink_to_fit, "reduces memory usage by freeing unused memory"); |
| |
| cl.def("clear", &Vector::clear, "clears the contents"); |
| cl.def("swap", &Vector::swap, "swaps the contents"); |
| |
| cl.def("front", [](Vector &v) { |
| if (v.size()) return v.front(); |
| else throw index_error(); |
| }, "access the first element"); |
| |
| cl.def("back", [](Vector &v) { |
| if (v.size()) return v.back(); |
| else throw index_error(); |
| }, "access the last element "); |
| |
| #endif |
| |
| return cl; |
| } |
| |
| |
| |
| // |
| // std::map, std::unordered_map |
| // |
| |
| PYBIND11_NAMESPACE_BEGIN(detail) |
| |
| /* Fallback functions */ |
| template <typename, typename, typename... Args> void map_if_insertion_operator(const Args &...) { } |
| template <typename, typename, typename... Args> void map_assignment(const Args &...) { } |
| |
| // Map assignment when copy-assignable: just copy the value |
| template <typename Map, typename Class_> |
| void map_assignment(enable_if_t<is_copy_assignable<typename Map::mapped_type>::value, Class_> &cl) { |
| using KeyType = typename Map::key_type; |
| using MappedType = typename Map::mapped_type; |
| |
| cl.def("__setitem__", |
| [](Map &m, const KeyType &k, const MappedType &v) { |
| auto it = m.find(k); |
| if (it != m.end()) it->second = v; |
| else m.emplace(k, v); |
| } |
| ); |
| } |
| |
| // Not copy-assignable, but still copy-constructible: we can update the value by erasing and reinserting |
| template<typename Map, typename Class_> |
| void map_assignment(enable_if_t< |
| !is_copy_assignable<typename Map::mapped_type>::value && |
| is_copy_constructible<typename Map::mapped_type>::value, |
| Class_> &cl) { |
| using KeyType = typename Map::key_type; |
| using MappedType = typename Map::mapped_type; |
| |
| cl.def("__setitem__", |
| [](Map &m, const KeyType &k, const MappedType &v) { |
| // We can't use m[k] = v; because value type might not be default constructable |
| auto r = m.emplace(k, v); |
| if (!r.second) { |
| // value type is not copy assignable so the only way to insert it is to erase it first... |
| m.erase(r.first); |
| m.emplace(k, v); |
| } |
| } |
| ); |
| } |
| |
| |
| template <typename Map, typename Class_> auto map_if_insertion_operator(Class_ &cl, std::string const &name) |
| -> decltype(std::declval<std::ostream&>() << std::declval<typename Map::key_type>() << std::declval<typename Map::mapped_type>(), void()) { |
| |
| cl.def("__repr__", |
| [name](Map &m) { |
| std::ostringstream s; |
| s << name << '{'; |
| bool f = false; |
| for (auto const &kv : m) { |
| if (f) |
| s << ", "; |
| s << kv.first << ": " << kv.second; |
| f = true; |
| } |
| s << '}'; |
| return s.str(); |
| }, |
| "Return the canonical string representation of this map." |
| ); |
| } |
| |
| template<typename Map> |
| struct keys_view |
| { |
| Map ↦ |
| }; |
| |
| template<typename Map> |
| struct values_view |
| { |
| Map ↦ |
| }; |
| |
| template<typename Map> |
| struct items_view |
| { |
| Map ↦ |
| }; |
| |
| PYBIND11_NAMESPACE_END(detail) |
| |
| template <typename Map, typename holder_type = std::unique_ptr<Map>, typename... Args> |
| class_<Map, holder_type> bind_map(handle scope, const std::string &name, Args&&... args) { |
| using KeyType = typename Map::key_type; |
| using MappedType = typename Map::mapped_type; |
| using KeysView = detail::keys_view<Map>; |
| using ValuesView = detail::values_view<Map>; |
| using ItemsView = detail::items_view<Map>; |
| using Class_ = class_<Map, holder_type>; |
| |
| // If either type is a non-module-local bound type then make the map binding non-local as well; |
| // otherwise (e.g. both types are either module-local or converting) the map will be |
| // module-local. |
| auto tinfo = detail::get_type_info(typeid(MappedType)); |
| bool local = !tinfo || tinfo->module_local; |
| if (local) { |
| tinfo = detail::get_type_info(typeid(KeyType)); |
| local = !tinfo || tinfo->module_local; |
| } |
| |
| Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...); |
| class_<KeysView> keys_view( |
| scope, ("KeysView[" + name + "]").c_str(), pybind11::module_local(local)); |
| class_<ValuesView> values_view( |
| scope, ("ValuesView[" + name + "]").c_str(), pybind11::module_local(local)); |
| class_<ItemsView> items_view( |
| scope, ("ItemsView[" + name + "]").c_str(), pybind11::module_local(local)); |
| |
| cl.def(init<>()); |
| |
| // Register stream insertion operator (if possible) |
| detail::map_if_insertion_operator<Map, Class_>(cl, name); |
| |
| cl.def("__bool__", |
| [](const Map &m) -> bool { return !m.empty(); }, |
| "Check whether the map is nonempty" |
| ); |
| |
| cl.def("__iter__", |
| [](Map &m) { return make_key_iterator(m.begin(), m.end()); }, |
| keep_alive<0, 1>() /* Essential: keep map alive while iterator exists */ |
| ); |
| |
| cl.def("keys", |
| [](Map &m) { return KeysView{m}; }, |
| keep_alive<0, 1>() /* Essential: keep map alive while view exists */ |
| ); |
| |
| cl.def("values", |
| [](Map &m) { return ValuesView{m}; }, |
| keep_alive<0, 1>() /* Essential: keep map alive while view exists */ |
| ); |
| |
| cl.def("items", |
| [](Map &m) { return ItemsView{m}; }, |
| keep_alive<0, 1>() /* Essential: keep map alive while view exists */ |
| ); |
| |
| cl.def("__getitem__", |
| [](Map &m, const KeyType &k) -> MappedType & { |
| auto it = m.find(k); |
| if (it == m.end()) |
| throw key_error(); |
| return it->second; |
| }, |
| return_value_policy::reference_internal // ref + keepalive |
| ); |
| |
| cl.def("__contains__", |
| [](Map &m, const KeyType &k) -> bool { |
| auto it = m.find(k); |
| if (it == m.end()) |
| return false; |
| return true; |
| } |
| ); |
| // Fallback for when the object is not of the key type |
| cl.def("__contains__", [](Map &, const object &) -> bool { return false; }); |
| |
| // Assignment provided only if the type is copyable |
| detail::map_assignment<Map, Class_>(cl); |
| |
| cl.def("__delitem__", |
| [](Map &m, const KeyType &k) { |
| auto it = m.find(k); |
| if (it == m.end()) |
| throw key_error(); |
| m.erase(it); |
| } |
| ); |
| |
| cl.def("__len__", &Map::size); |
| |
| keys_view.def("__len__", [](KeysView &view) { return view.map.size(); }); |
| keys_view.def("__iter__", |
| [](KeysView &view) { |
| return make_key_iterator(view.map.begin(), view.map.end()); |
| }, |
| keep_alive<0, 1>() /* Essential: keep view alive while iterator exists */ |
| ); |
| keys_view.def("__contains__", |
| [](KeysView &view, const KeyType &k) -> bool { |
| auto it = view.map.find(k); |
| if (it == view.map.end()) |
| return false; |
| return true; |
| } |
| ); |
| // Fallback for when the object is not of the key type |
| keys_view.def("__contains__", [](KeysView &, const object &) -> bool { return false; }); |
| |
| values_view.def("__len__", [](ValuesView &view) { return view.map.size(); }); |
| values_view.def("__iter__", |
| [](ValuesView &view) { |
| return make_value_iterator(view.map.begin(), view.map.end()); |
| }, |
| keep_alive<0, 1>() /* Essential: keep view alive while iterator exists */ |
| ); |
| |
| items_view.def("__len__", [](ItemsView &view) { return view.map.size(); }); |
| items_view.def("__iter__", |
| [](ItemsView &view) { |
| return make_iterator(view.map.begin(), view.map.end()); |
| }, |
| keep_alive<0, 1>() /* Essential: keep view alive while iterator exists */ |
| ); |
| |
| return cl; |
| } |
| |
| PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE) |