| /* |
| * Copyright (c) 2021 ARM Limited |
| * All rights reserved. |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2008 Mark D. Hill and David A. Wood |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "mem/ruby/system/DMASequencer.hh" |
| |
| #include <memory> |
| |
| #include "debug/RubyDma.hh" |
| #include "debug/RubyStats.hh" |
| #include "mem/ruby/protocol/SequencerMsg.hh" |
| #include "mem/ruby/protocol/SequencerRequestType.hh" |
| #include "mem/ruby/system/RubySystem.hh" |
| |
| namespace gem5 |
| { |
| |
| namespace ruby |
| { |
| |
| DMARequest::DMARequest(uint64_t start_paddr, int len, bool write, |
| int bytes_completed, int bytes_issued, uint8_t *data, |
| PacketPtr pkt) |
| : start_paddr(start_paddr), len(len), write(write), |
| bytes_completed(bytes_completed), bytes_issued(bytes_issued), data(data), |
| pkt(pkt) |
| { |
| } |
| |
| DMASequencer::DMASequencer(const Params &p) |
| : RubyPort(p), m_outstanding_count(0), |
| m_max_outstanding_requests(p.max_outstanding_requests) |
| { |
| } |
| |
| void |
| DMASequencer::init() |
| { |
| RubyPort::init(); |
| m_data_block_mask = mask(RubySystem::getBlockSizeBits()); |
| } |
| |
| RequestStatus |
| DMASequencer::makeRequest(PacketPtr pkt) |
| { |
| if (m_outstanding_count == m_max_outstanding_requests) { |
| return RequestStatus_BufferFull; |
| } |
| |
| Addr paddr = pkt->getAddr(); |
| uint8_t* data = pkt->getPtr<uint8_t>(); |
| int len = pkt->getSize(); |
| bool write = pkt->isWrite(); |
| |
| // Should DMA be allowed to generate this ? |
| assert(!pkt->isMaskedWrite()); |
| |
| assert(m_outstanding_count < m_max_outstanding_requests); |
| Addr line_addr = makeLineAddress(paddr); |
| auto emplace_pair = |
| m_RequestTable.emplace(std::piecewise_construct, |
| std::forward_as_tuple(line_addr), |
| std::forward_as_tuple(paddr, len, write, 0, |
| 0, data, pkt)); |
| DMARequest& active_request = emplace_pair.first->second; |
| |
| // This is pretty conservative. A regular Sequencer with a more beefy |
| // request table that can track multiple requests for a cache line should |
| // be used if a more aggressive policy is needed. |
| if (!emplace_pair.second) { |
| DPRINTF(RubyDma, "DMA aliased: addr %p, len %d\n", line_addr, len); |
| return RequestStatus_Aliased; |
| } |
| |
| DPRINTF(RubyDma, "DMA req created: addr %p, len %d\n", line_addr, len); |
| |
| std::shared_ptr<SequencerMsg> msg = |
| std::make_shared<SequencerMsg>(clockEdge()); |
| msg->getPhysicalAddress() = paddr; |
| msg->getLineAddress() = line_addr; |
| |
| if (pkt->req->isAtomic()) { |
| msg->setType(SequencerRequestType_ATOMIC); |
| |
| // While regular LD/ST can support DMAs spanning multiple cache lines, |
| // atomic requests are only supported within a single cache line. The |
| // atomic request will end upon atomicCallback and not call issueNext. |
| int block_size = m_ruby_system->getBlockSizeBytes(); |
| int atomic_offset = pkt->getAddr() - line_addr; |
| std::vector<bool> access_mask(block_size, false); |
| assert(atomic_offset + pkt->getSize() <= block_size); |
| |
| for (int idx = 0; idx < pkt->getSize(); ++idx) { |
| access_mask[atomic_offset + idx] = true; |
| } |
| |
| std::vector<std::pair<int, AtomicOpFunctor*>> atomic_ops; |
| std::pair<int, AtomicOpFunctor*> |
| atomic_op(atomic_offset, pkt->getAtomicOp()); |
| |
| atomic_ops.emplace_back(atomic_op); |
| msg->getwriteMask().setAtomicOps(atomic_ops); |
| } else if (write) { |
| msg->setType(SequencerRequestType_ST); |
| } else { |
| assert(pkt->isRead()); |
| msg->setType(SequencerRequestType_LD); |
| } |
| |
| int offset = paddr & m_data_block_mask; |
| |
| msg->getLen() = (offset + len) <= RubySystem::getBlockSizeBytes() ? |
| len : RubySystem::getBlockSizeBytes() - offset; |
| |
| if (write && (data != NULL)) { |
| if (active_request.data != NULL) { |
| msg->getDataBlk().setData(data, offset, msg->getLen()); |
| } |
| } |
| |
| m_outstanding_count++; |
| |
| assert(m_mandatory_q_ptr != NULL); |
| m_mandatory_q_ptr->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1))); |
| active_request.bytes_issued += msg->getLen(); |
| |
| return RequestStatus_Issued; |
| } |
| |
| void |
| DMASequencer::issueNext(const Addr& address) |
| { |
| RequestTable::iterator i = m_RequestTable.find(address); |
| assert(i != m_RequestTable.end()); |
| |
| DMARequest &active_request = i->second; |
| |
| assert(m_outstanding_count <= m_max_outstanding_requests); |
| active_request.bytes_completed = active_request.bytes_issued; |
| if (active_request.len == active_request.bytes_completed) { |
| DPRINTF(RubyDma, "DMA request completed: addr %p, size %d\n", |
| address, active_request.len); |
| m_outstanding_count--; |
| PacketPtr pkt = active_request.pkt; |
| m_RequestTable.erase(i); |
| ruby_hit_callback(pkt); |
| return; |
| } |
| |
| std::shared_ptr<SequencerMsg> msg = |
| std::make_shared<SequencerMsg>(clockEdge()); |
| msg->getPhysicalAddress() = active_request.start_paddr + |
| active_request.bytes_completed; |
| |
| assert((msg->getPhysicalAddress() & m_data_block_mask) == 0); |
| msg->getLineAddress() = makeLineAddress(msg->getPhysicalAddress()); |
| |
| msg->getType() = (active_request.write ? SequencerRequestType_ST : |
| SequencerRequestType_LD); |
| |
| msg->getLen() = |
| (active_request.len - |
| active_request.bytes_completed < RubySystem::getBlockSizeBytes() ? |
| active_request.len - active_request.bytes_completed : |
| RubySystem::getBlockSizeBytes()); |
| |
| if (active_request.write) { |
| msg->getDataBlk(). |
| setData(&active_request.data[active_request.bytes_completed], |
| 0, msg->getLen()); |
| } |
| |
| assert(m_mandatory_q_ptr != NULL); |
| m_mandatory_q_ptr->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1))); |
| active_request.bytes_issued += msg->getLen(); |
| DPRINTF(RubyDma, |
| "DMA request bytes issued %d, bytes completed %d, total len %d\n", |
| active_request.bytes_issued, active_request.bytes_completed, |
| active_request.len); |
| } |
| |
| void |
| DMASequencer::dataCallback(const DataBlock & dblk, const Addr& address) |
| { |
| |
| RequestTable::iterator i = m_RequestTable.find(address); |
| assert(i != m_RequestTable.end()); |
| |
| DMARequest &active_request = i->second; |
| int len = active_request.bytes_issued - active_request.bytes_completed; |
| int offset = 0; |
| if (active_request.bytes_completed == 0) |
| offset = active_request.start_paddr & m_data_block_mask; |
| assert(!active_request.write); |
| if (active_request.data != NULL) { |
| memcpy(&active_request.data[active_request.bytes_completed], |
| dblk.getData(offset, len), len); |
| } |
| issueNext(address); |
| } |
| |
| void |
| DMASequencer::ackCallback(const Addr& address) |
| { |
| assert(m_RequestTable.find(address) != m_RequestTable.end()); |
| issueNext(address); |
| } |
| |
| void |
| DMASequencer::atomicCallback(const DataBlock& dblk, const Addr& address) |
| { |
| RequestTable::iterator i = m_RequestTable.find(address); |
| assert(i != m_RequestTable.end()); |
| |
| DMARequest &active_request = i->second; |
| PacketPtr pkt = active_request.pkt; |
| |
| int offset = active_request.start_paddr & m_data_block_mask; |
| memcpy(pkt->getPtr<uint8_t>(), dblk.getData(offset, pkt->getSize()), |
| pkt->getSize()); |
| |
| ruby_hit_callback(pkt); |
| |
| m_outstanding_count--; |
| m_RequestTable.erase(i); |
| } |
| |
| void |
| DMASequencer::recordRequestType(DMASequencerRequestType requestType) |
| { |
| DPRINTF(RubyStats, "Recorded statistic: %s\n", |
| DMASequencerRequestType_to_string(requestType)); |
| } |
| |
| } // namespace ruby |
| } // namespace gem5 |