blob: 7e6304afa1477faee8e1011ce915ac41c5c83224 [file] [log] [blame]
/*
* Copyright (c) 2021 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "dev/amdgpu/amdgpu_device.hh"
#include <fstream>
#include "debug/AMDGPUDevice.hh"
#include "dev/amdgpu/amdgpu_vm.hh"
#include "dev/amdgpu/interrupt_handler.hh"
#include "dev/amdgpu/pm4_packet_processor.hh"
#include "dev/amdgpu/sdma_engine.hh"
#include "dev/hsa/hw_scheduler.hh"
#include "gpu-compute/gpu_command_processor.hh"
#include "gpu-compute/shader.hh"
#include "mem/abstract_mem.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
#include "params/AMDGPUDevice.hh"
#include "sim/byteswap.hh"
#include "sim/sim_exit.hh"
namespace gem5
{
AMDGPUDevice::AMDGPUDevice(const AMDGPUDeviceParams &p)
: PciDevice(p), gpuMemMgr(p.memory_manager), deviceIH(p.device_ih),
sdma0(p.sdma0), sdma1(p.sdma1), pm4PktProc(p.pm4_pkt_proc), cp(p.cp),
checkpoint_before_mmios(p.checkpoint_before_mmios),
init_interrupt_count(0), _lastVMID(0),
deviceMem(name() + ".deviceMem", p.memories, false, "", false)
{
// Loading the rom binary dumped from hardware.
std::ifstream romBin;
romBin.open(p.rom_binary, std::ios::binary);
romBin.read((char *)rom.data(), ROM_SIZE);
romBin.close();
// System pointer needs to be explicitly set for device memory since
// DRAMCtrl uses it to get (1) cache line size and (2) the mem mode.
// Note this means the cache line size is system wide.
for (auto& m : p.memories) {
m->system(p.system);
// Add to system's device memory map.
p.system->addDeviceMemory(gpuMemMgr->getRequestorID(), m);
}
if (config.expansionROM) {
romRange = RangeSize(config.expansionROM, ROM_SIZE);
} else {
romRange = RangeSize(VGA_ROM_DEFAULT, ROM_SIZE);
}
if (p.trace_file != "") {
mmioReader.readMMIOTrace(p.trace_file);
}
sdma0->setGPUDevice(this);
sdma0->setId(0);
sdma1->setGPUDevice(this);
sdma1->setId(1);
deviceIH->setGPUDevice(this);
pm4PktProc->setGPUDevice(this);
cp->hsaPacketProc().setGPUDevice(this);
cp->setGPUDevice(this);
}
void
AMDGPUDevice::readROM(PacketPtr pkt)
{
Addr rom_offset = pkt->getAddr() & (ROM_SIZE - 1);
uint64_t rom_data = 0;
memcpy(&rom_data, rom.data() + rom_offset, pkt->getSize());
pkt->setUintX(rom_data, ByteOrder::little);
DPRINTF(AMDGPUDevice, "Read from addr %#x on ROM offset %#x data: %#x\n",
pkt->getAddr(), rom_offset, rom_data);
}
void
AMDGPUDevice::writeROM(PacketPtr pkt)
{
assert(isROM(pkt->getAddr()));
Addr rom_offset = pkt->getAddr() - romRange.start();
uint64_t rom_data = pkt->getUintX(ByteOrder::little);
memcpy(rom.data() + rom_offset, &rom_data, pkt->getSize());
DPRINTF(AMDGPUDevice, "Write to addr %#x on ROM offset %#x data: %#x\n",
pkt->getAddr(), rom_offset, rom_data);
}
AddrRangeList
AMDGPUDevice::getAddrRanges() const
{
AddrRangeList ranges = PciDevice::getAddrRanges();
AddrRangeList ret_ranges;
ret_ranges.push_back(romRange);
// If the range starts at zero assume OS hasn't assigned it yet. Do not
// return ranges starting with zero as they will surely overlap with
// another range causing the I/O crossbar to fatal.
for (auto & r : ranges) {
if (r.start() != 0) {
ret_ranges.push_back(r);
}
}
return ret_ranges;
}
Tick
AMDGPUDevice::readConfig(PacketPtr pkt)
{
[[maybe_unused]] int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
DPRINTF(AMDGPUDevice, "Read Config: from offset: %#x size: %#x "
"data: %#x\n", offset, pkt->getSize(), config.data[offset]);
Tick delay = PciDevice::readConfig(pkt);
// Before sending MMIOs the driver sends three interrupts in a row.
// Use this to trigger creating a checkpoint to restore in timing mode.
// This is only necessary until we can create a "hole" in the KVM VM
// around the VGA ROM region such that KVM exits and sends requests to
// this device rather than the KVM VM.
if (checkpoint_before_mmios) {
if (offset == PCI0_INTERRUPT_PIN) {
if (++init_interrupt_count == 3) {
DPRINTF(AMDGPUDevice, "Checkpointing before first MMIO\n");
exitSimLoop("checkpoint", 0, curTick() + delay + 1);
}
} else {
init_interrupt_count = 0;
}
}
return delay;
}
Tick
AMDGPUDevice::writeConfig(PacketPtr pkt)
{
[[maybe_unused]] int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
DPRINTF(AMDGPUDevice, "Write Config: from offset: %#x size: %#x "
"data: %#x\n", offset, pkt->getSize(),
pkt->getUintX(ByteOrder::little));
return PciDevice::writeConfig(pkt);
}
void
AMDGPUDevice::dispatchAccess(PacketPtr pkt, bool read)
{
DPRINTF(AMDGPUDevice, "%s from addr %#x size: %#x data: %#x\n",
read ? "Read" : "Write", pkt->getAddr(), pkt->getSize(),
pkt->getUintX(ByteOrder::little));
pkt->makeAtomicResponse();
}
void
AMDGPUDevice::readFrame(PacketPtr pkt, Addr offset)
{
DPRINTF(AMDGPUDevice, "Read framebuffer address %#lx\n", offset);
/*
* Return data for frame reads in priority order: (1) Special addresses
* first, ignoring any writes from driver. (2) Any other address from
* device backing store / abstract memory class functionally.
*/
if (offset == 0xa28000) {
/*
* Handle special counter addresses in framebuffer. These counter
* addresses expect the read to return previous value + 1.
*/
if (regs.find(pkt->getAddr()) == regs.end()) {
regs[pkt->getAddr()] = 1;
} else {
regs[pkt->getAddr()]++;
}
pkt->setUintX(regs[pkt->getAddr()], ByteOrder::little);
} else {
/*
* Read the value from device memory. This must be done functionally
* because this method is called by the PCIDevice::read method which
* is a non-timing read.
*/
RequestPtr req = std::make_shared<Request>(offset, pkt->getSize(), 0,
vramRequestorId());
PacketPtr readPkt = Packet::createRead(req);
uint8_t *dataPtr = new uint8_t[pkt->getSize()];
readPkt->dataDynamic(dataPtr);
auto system = cp->shader()->gpuCmdProc.system();
system->getDeviceMemory(readPkt)->access(readPkt);
pkt->setUintX(readPkt->getUintX(ByteOrder::little), ByteOrder::little);
}
}
void
AMDGPUDevice::readDoorbell(PacketPtr pkt, Addr offset)
{
DPRINTF(AMDGPUDevice, "Read doorbell %#lx\n", offset);
mmioReader.readFromTrace(pkt, DOORBELL_BAR, offset);
}
void
AMDGPUDevice::readMMIO(PacketPtr pkt, Addr offset)
{
Addr aperture = gpuvm.getMmioAperture(offset);
Addr aperture_offset = offset - aperture;
// By default read from MMIO trace. Overwrite the packet for a select
// few more dynamic MMIOs.
DPRINTF(AMDGPUDevice, "Read MMIO %#lx\n", offset);
mmioReader.readFromTrace(pkt, MMIO_BAR, offset);
if (regs.find(pkt->getAddr()) != regs.end()) {
uint64_t value = regs[pkt->getAddr()];
DPRINTF(AMDGPUDevice, "Reading what kernel wrote before: %#x\n",
value);
pkt->setUintX(value, ByteOrder::little);
}
switch (aperture) {
case NBIO_BASE:
switch (aperture_offset) {
// This is a PCIe status register. At some point during driver init
// the driver checks that interrupts are enabled. This is only
// checked once, so if the MMIO trace does not exactly line up with
// what the driver is doing in gem5, this may still have the first
// bit zero causing driver to fail. Therefore, we always set this
// bit to one as there is no harm to do so.
case 0x3c: // mmPCIE_DATA2 << 2
uint32_t value = pkt->getLE<uint32_t>() | 0x1;
DPRINTF(AMDGPUDevice, "Marking interrupts enabled: %#lx\n", value);
pkt->setLE<uint32_t>(value);
break;
} break;
case GRBM_BASE:
gpuvm.readMMIO(pkt, aperture_offset >> GRBM_OFFSET_SHIFT);
break;
case MMHUB_BASE:
gpuvm.readMMIO(pkt, aperture_offset >> MMHUB_OFFSET_SHIFT);
break;
default:
break;
}
}
void
AMDGPUDevice::writeFrame(PacketPtr pkt, Addr offset)
{
DPRINTF(AMDGPUDevice, "Wrote framebuffer address %#lx\n", offset);
Addr aperture = gpuvm.getFrameAperture(offset);
Addr aperture_offset = offset - aperture;
// Record the value
if (aperture == gpuvm.gartBase()) {
gpuvm.gartTable[aperture_offset] = pkt->getUintX(ByteOrder::little);
DPRINTF(AMDGPUDevice, "GART translation %p -> %p\n", aperture_offset,
gpuvm.gartTable[aperture_offset]);
}
}
void
AMDGPUDevice::writeDoorbell(PacketPtr pkt, Addr offset)
{
DPRINTF(AMDGPUDevice, "Wrote doorbell %#lx\n", offset);
if (doorbells.find(offset) != doorbells.end()) {
QueueType q_type = doorbells[offset];
DPRINTF(AMDGPUDevice, "Doorbell offset %p queue: %d\n",
offset, q_type);
switch (q_type) {
case Compute:
pm4PktProc->process(pm4PktProc->getQueue(offset),
pkt->getLE<uint64_t>());
break;
case Gfx:
pm4PktProc->process(pm4PktProc->getQueue(offset, true),
pkt->getLE<uint64_t>());
break;
case SDMAGfx: {
SDMAEngine *sdmaEng = getSDMAEngine(offset);
sdmaEng->processGfx(pkt->getLE<uint64_t>());
} break;
case SDMAPage: {
SDMAEngine *sdmaEng = getSDMAEngine(offset);
sdmaEng->processPage(pkt->getLE<uint64_t>());
} break;
case ComputeAQL: {
cp->hsaPacketProc().hwScheduler()->write(offset,
pkt->getLE<uint64_t>() + 1);
pm4PktProc->updateReadIndex(offset, pkt->getLE<uint64_t>() + 1);
} break;
case InterruptHandler:
deviceIH->updateRptr(pkt->getLE<uint32_t>());
break;
case RLC: {
SDMAEngine *sdmaEng = getSDMAEngine(offset);
sdmaEng->processRLC(offset, pkt->getLE<uint64_t>());
} break;
default:
panic("Write to unkown queue type!");
}
} else {
warn("Unknown doorbell offset: %lx\n", offset);
}
}
void
AMDGPUDevice::writeMMIO(PacketPtr pkt, Addr offset)
{
Addr aperture = gpuvm.getMmioAperture(offset);
Addr aperture_offset = offset - aperture;
DPRINTF(AMDGPUDevice, "Wrote MMIO %#lx\n", offset);
switch (aperture) {
/* Write a register to the first System DMA. */
case SDMA0_BASE:
sdma0->writeMMIO(pkt, aperture_offset >> SDMA_OFFSET_SHIFT);
break;
/* Write a register to the second System DMA. */
case SDMA1_BASE:
sdma1->writeMMIO(pkt, aperture_offset >> SDMA_OFFSET_SHIFT);
break;
/* Write a general register to the graphics register bus manager. */
case GRBM_BASE:
gpuvm.writeMMIO(pkt, aperture_offset >> GRBM_OFFSET_SHIFT);
pm4PktProc->writeMMIO(pkt, aperture_offset >> GRBM_OFFSET_SHIFT);
break;
/* Write a register to the interrupt handler. */
case IH_BASE:
deviceIH->writeMMIO(pkt, aperture_offset >> IH_OFFSET_SHIFT);
break;
default:
DPRINTF(AMDGPUDevice, "Unknown MMIO aperture for %#x\n", offset);
break;
}
}
Tick
AMDGPUDevice::read(PacketPtr pkt)
{
if (isROM(pkt->getAddr())) {
readROM(pkt);
} else {
int barnum = -1;
Addr offset = 0;
getBAR(pkt->getAddr(), barnum, offset);
switch (barnum) {
case FRAMEBUFFER_BAR:
readFrame(pkt, offset);
break;
case DOORBELL_BAR:
readDoorbell(pkt, offset);
break;
case MMIO_BAR:
readMMIO(pkt, offset);
break;
default:
panic("Request with address out of mapped range!");
}
}
dispatchAccess(pkt, true);
return pioDelay;
}
Tick
AMDGPUDevice::write(PacketPtr pkt)
{
if (isROM(pkt->getAddr())) {
writeROM(pkt);
dispatchAccess(pkt, false);
return pioDelay;
}
int barnum = -1;
Addr offset = 0;
getBAR(pkt->getAddr(), barnum, offset);
switch (barnum) {
case FRAMEBUFFER_BAR:
gpuMemMgr->writeRequest(offset, pkt->getPtr<uint8_t>(),
pkt->getSize(), 0, nullptr);
writeFrame(pkt, offset);
break;
case DOORBELL_BAR:
writeDoorbell(pkt, offset);
break;
case MMIO_BAR:
writeMMIO(pkt, offset);
break;
default:
panic("Request with address out of mapped range!");
}
// Record only if there is non-zero value, or a value to be overwritten.
// Reads return 0 by default.
uint64_t data = pkt->getUintX(ByteOrder::little);
DPRINTF(AMDGPUDevice, "PCI Write to %#lx data %#lx\n",
pkt->getAddr(), data);
if (data || regs.find(pkt->getAddr()) != regs.end())
regs[pkt->getAddr()] = data;
dispatchAccess(pkt, false);
return pioDelay;
}
uint32_t
AMDGPUDevice::getRegVal(uint32_t addr)
{
return regs[addr];
}
void
AMDGPUDevice::setRegVal(uint32_t addr, uint32_t value)
{
DPRINTF(AMDGPUDevice, "Setting register 0x%lx to %x\n",
addr, value);
regs[addr] = value;
}
void
AMDGPUDevice::setDoorbellType(uint32_t offset, QueueType qt)
{
DPRINTF(AMDGPUDevice, "Setting doorbell type for %x\n", offset);
doorbells[offset] = qt;
}
void
AMDGPUDevice::setSDMAEngine(Addr offset, SDMAEngine *eng)
{
sdmaEngs[offset] = eng;
}
SDMAEngine*
AMDGPUDevice::getSDMAById(int id)
{
/**
* PM4 packets selected SDMAs using an integer ID. This method simply maps
* the integer ID to a pointer to the SDMA and checks for invalid IDs.
*/
switch (id) {
case 0:
return sdma0;
break;
case 1:
return sdma1;
break;
default:
panic("No SDMA with id %d\n", id);
break;
}
return nullptr;
}
SDMAEngine*
AMDGPUDevice::getSDMAEngine(Addr offset)
{
return sdmaEngs[offset];
}
void
AMDGPUDevice::intrPost()
{
PciDevice::intrPost();
}
void
AMDGPUDevice::serialize(CheckpointOut &cp) const
{
// Serialize the PciDevice base class
PciDevice::serialize(cp);
uint64_t regs_size = regs.size();
uint64_t doorbells_size = doorbells.size();
uint64_t sdma_engs_size = sdmaEngs.size();
SERIALIZE_SCALAR(regs_size);
SERIALIZE_SCALAR(doorbells_size);
SERIALIZE_SCALAR(sdma_engs_size);
// Make a c-style array of the regs to serialize
uint32_t reg_addrs[regs_size];
uint64_t reg_values[regs_size];
uint32_t doorbells_offset[doorbells_size];
QueueType doorbells_queues[doorbells_size];
uint32_t sdma_engs_offset[sdma_engs_size];
int sdma_engs[sdma_engs_size];
int idx = 0;
for (auto & it : regs) {
reg_addrs[idx] = it.first;
reg_values[idx] = it.second;
++idx;
}
idx = 0;
for (auto & it : doorbells) {
doorbells_offset[idx] = it.first;
doorbells_queues[idx] = it.second;
++idx;
}
idx = 0;
for (auto & it : sdmaEngs) {
sdma_engs_offset[idx] = it.first;
sdma_engs[idx] = it.second == sdma0 ? 0 : 1;
++idx;
}
SERIALIZE_ARRAY(reg_addrs, sizeof(reg_addrs)/sizeof(reg_addrs[0]));
SERIALIZE_ARRAY(reg_values, sizeof(reg_values)/sizeof(reg_values[0]));
SERIALIZE_ARRAY(doorbells_offset, sizeof(doorbells_offset)/
sizeof(doorbells_offset[0]));
SERIALIZE_ARRAY(doorbells_queues, sizeof(doorbells_queues)/
sizeof(doorbells_queues[0]));
SERIALIZE_ARRAY(sdma_engs_offset, sizeof(sdma_engs_offset)/
sizeof(sdma_engs_offset[0]));
SERIALIZE_ARRAY(sdma_engs, sizeof(sdma_engs)/sizeof(sdma_engs[0]));
// Serialize the device memory
deviceMem.serializeSection(cp, "deviceMem");
gpuvm.serializeSection(cp, "GPUVM");
}
void
AMDGPUDevice::unserialize(CheckpointIn &cp)
{
// Unserialize the PciDevice base class
PciDevice::unserialize(cp);
uint64_t regs_size = 0;
uint64_t doorbells_size = 0;
uint64_t sdma_engs_size = 0;
UNSERIALIZE_SCALAR(regs_size);
UNSERIALIZE_SCALAR(doorbells_size);
UNSERIALIZE_SCALAR(sdma_engs_size);
if (regs_size > 0) {
uint32_t reg_addrs[regs_size];
uint64_t reg_values[regs_size];
UNSERIALIZE_ARRAY(reg_addrs, sizeof(reg_addrs)/sizeof(reg_addrs[0]));
UNSERIALIZE_ARRAY(reg_values,
sizeof(reg_values)/sizeof(reg_values[0]));
for (int idx = 0; idx < regs_size; ++idx) {
regs.insert(std::make_pair(reg_addrs[idx], reg_values[idx]));
}
}
if (doorbells_size > 0) {
uint32_t doorbells_offset[doorbells_size];
QueueType doorbells_queues[doorbells_size];
UNSERIALIZE_ARRAY(doorbells_offset, sizeof(doorbells_offset)/
sizeof(doorbells_offset[0]));
UNSERIALIZE_ARRAY(doorbells_queues, sizeof(doorbells_queues)/
sizeof(doorbells_queues[0]));
for (int idx = 0; idx < doorbells_size; ++idx) {
regs.insert(std::make_pair(doorbells_offset[idx],
doorbells_queues[idx]));
doorbells[doorbells_offset[idx]] = doorbells_queues[idx];
}
}
if (sdma_engs_size > 0) {
uint32_t sdma_engs_offset[sdma_engs_size];
int sdma_engs[sdma_engs_size];
UNSERIALIZE_ARRAY(sdma_engs_offset, sizeof(sdma_engs_offset)/
sizeof(sdma_engs_offset[0]));
UNSERIALIZE_ARRAY(sdma_engs, sizeof(sdma_engs)/sizeof(sdma_engs[0]));
for (int idx = 0; idx < sdma_engs_size; ++idx) {
SDMAEngine *sdma = sdma_engs[idx] == 0 ? sdma0 : sdma1;
sdmaEngs.insert(std::make_pair(sdma_engs_offset[idx], sdma));
}
}
// Unserialize the device memory
deviceMem.unserializeSection(cp, "deviceMem");
gpuvm.unserializeSection(cp, "GPUVM");
}
uint16_t
AMDGPUDevice::allocateVMID(uint16_t pasid)
{
for (uint16_t vmid = 1; vmid < AMDGPU_VM_COUNT; vmid++) {
auto result = usedVMIDs.find(vmid);
if (result == usedVMIDs.end()) {
idMap.insert(std::make_pair(pasid, vmid));
usedVMIDs[vmid] = {};
_lastVMID = vmid;
return vmid;
}
}
panic("All VMIDs have been assigned");
}
void
AMDGPUDevice::deallocateVmid(uint16_t vmid)
{
usedVMIDs.erase(vmid);
}
void
AMDGPUDevice::deallocatePasid(uint16_t pasid)
{
auto result = idMap.find(pasid);
assert(result != idMap.end());
if (result == idMap.end()) return;
uint16_t vmid = result->second;
idMap.erase(result);
usedVMIDs.erase(vmid);
}
void
AMDGPUDevice::deallocateAllQueues()
{
idMap.erase(idMap.begin(), idMap.end());
usedVMIDs.erase(usedVMIDs.begin(), usedVMIDs.end());
sdma0->deallocateRLCQueues();
sdma1->deallocateRLCQueues();
}
void
AMDGPUDevice::mapDoorbellToVMID(Addr doorbell, uint16_t vmid)
{
doorbellVMIDMap[doorbell] = vmid;
}
std::unordered_map<uint16_t, std::set<int>>&
AMDGPUDevice::getUsedVMIDs()
{
return usedVMIDs;
}
void
AMDGPUDevice::insertQId(uint16_t vmid, int id)
{
usedVMIDs[vmid].insert(id);
}
} // namespace gem5