blob: cebea289eaccc0485198654b3c7cd447d23399a5 [file] [log] [blame]
/*****************************************************************************
* McPAT
* SOFTWARE LICENSE AGREEMENT
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Joel Hestness
* Yasuko Eckert
*
***************************************************************************/
#include <cmath>
#include <iostream>
#include "area.h"
#include "cachearray.h"
#include "common.h"
#include "decoder.h"
#include "parameter.h"
using namespace std;
double CacheArray::area_efficiency_threshold = 20.0;
int CacheArray::ed = 0;
//Fixed number, make sure timing can be satisfied.
int CacheArray::delay_wt = 100;
int CacheArray::cycle_time_wt = 1000;
//Fixed number, This is used to exhaustive search for individual components.
int CacheArray::area_wt = 10;
//Fixed number, This is used to exhaustive search for individual components.
int CacheArray::dynamic_power_wt = 10;
int CacheArray::leakage_power_wt = 10;
//Fixed number, make sure timing can be satisfied.
int CacheArray::delay_dev = 1000000;
int CacheArray::cycle_time_dev = 100;
//Fixed number, This is used to exhaustive search for individual components.
int CacheArray::area_dev = 1000000;
//Fixed number, This is used to exhaustive search for individual components.
int CacheArray::dynamic_power_dev = 1000000;
int CacheArray::leakage_power_dev = 1000000;
int CacheArray::cycle_time_dev_threshold = 10;
CacheArray::CacheArray(XMLNode* _xml_data,
const InputParameter *configure_interface, string _name,
enum Device_ty device_ty_, double _clockRate,
bool opt_local_, enum Core_type core_ty_, bool _is_default)
: McPATComponent(_xml_data), l_ip(*configure_interface),
device_ty(device_ty_), opt_local(opt_local_), core_ty(core_ty_),
is_default(_is_default), sbt_dir_overhead(0) {
name = _name;
clockRate = _clockRate;
if (l_ip.cache_sz < MIN_BUFFER_SIZE) {
l_ip.cache_sz = MIN_BUFFER_SIZE;
}
if (!l_ip.error_checking(name)) {
exit(1);
}
sbt_tdp_stats.reset();
sbt_rtp_stats.reset();
// Compute initial search point
local_result.valid = false;
compute_base_power();
// Set up the cache by searching design space with cacti
list<uca_org_t > candidate_solutions(0);
list<uca_org_t >::iterator candidate_iter, min_dynamic_energy_iter;
uca_org_t* temp_res = NULL;
double throughput = l_ip.throughput;
double latency = l_ip.latency;
bool throughput_overflow = true;
bool latency_overflow = true;
if ((local_result.cycle_time - throughput) <= 1e-10 )
throughput_overflow = false;
if ((local_result.access_time - latency) <= 1e-10)
latency_overflow = false;
if (opt_for_clk && opt_local) {
if (throughput_overflow || latency_overflow) {
l_ip.ed = ed;
l_ip.delay_wt = delay_wt;
l_ip.cycle_time_wt = cycle_time_wt;
l_ip.area_wt = area_wt;
l_ip.dynamic_power_wt = dynamic_power_wt;
l_ip.leakage_power_wt = leakage_power_wt;
l_ip.delay_dev = delay_dev;
l_ip.cycle_time_dev = cycle_time_dev;
l_ip.area_dev = area_dev;
l_ip.dynamic_power_dev = dynamic_power_dev;
l_ip.leakage_power_dev = leakage_power_dev;
//Reset overflow flag before start optimization iterations
throughput_overflow = true;
latency_overflow = true;
//Clean up the result for optimized for ED^2P
temp_res = &local_result;
temp_res->cleanup();
}
while ((throughput_overflow || latency_overflow) &&
l_ip.cycle_time_dev > cycle_time_dev_threshold) {
compute_base_power();
//This is the time_dev to be used for next iteration
l_ip.cycle_time_dev -= cycle_time_dev_threshold;
// from best area to worst area -->worst timing to best timing
if ((((local_result.cycle_time - throughput) <= 1e-10 ) &&
(local_result.access_time - latency) <= 1e-10) ||
(local_result.data_array2->area_efficiency <
area_efficiency_threshold && l_ip.assoc == 0)) {
//if no satisfiable solution is found,the most aggressive one
//is left
candidate_solutions.push_back(local_result);
if (((local_result.cycle_time - throughput) <= 1e-10) &&
((local_result.access_time - latency) <= 1e-10)) {
//ensure stop opt not because of cam
throughput_overflow = false;
latency_overflow = false;
}
} else {
if ((local_result.cycle_time - throughput) <= 1e-10)
throughput_overflow = false;
if ((local_result.access_time - latency) <= 1e-10)
latency_overflow = false;
//if not >10 local_result is the last result, it cannot be
//cleaned up
if (l_ip.cycle_time_dev > cycle_time_dev_threshold) {
//Only solutions not saved in the list need to be
//cleaned up
temp_res = &local_result;
temp_res->cleanup();
}
}
}
if (l_ip.assoc > 0) {
//For array structures except CAM and FA, Give warning but still
//provide a result with best timing found
if (throughput_overflow == true)
cout << "Warning: " << name
<< " array structure cannot satisfy throughput constraint."
<< endl;
if (latency_overflow == true)
cout << "Warning: " << name
<< " array structure cannot satisfy latency constraint."
<< endl;
}
double min_dynamic_energy = BIGNUM;
if (candidate_solutions.empty() == false) {
local_result.valid = true;
for (candidate_iter = candidate_solutions.begin();
candidate_iter != candidate_solutions.end();
++candidate_iter) {
if (min_dynamic_energy >
(candidate_iter)->power.readOp.dynamic) {
min_dynamic_energy =
(candidate_iter)->power.readOp.dynamic;
min_dynamic_energy_iter = candidate_iter;
local_result = *(min_dynamic_energy_iter);
} else {
candidate_iter->cleanup() ;
}
}
}
candidate_solutions.clear();
}
double long_channel_device_reduction =
longer_channel_device_reduction(device_ty, core_ty);
double macro_layout_overhead = g_tp.macro_layout_overhead;
double chip_PR_overhead = g_tp.chip_layout_overhead;
double total_overhead = macro_layout_overhead * chip_PR_overhead;
local_result.area *= total_overhead;
//maintain constant power density
double pppm_t[4] = {total_overhead, 1, 1, total_overhead};
double sckRation = g_tp.sckt_co_eff;
local_result.power.readOp.dynamic *= sckRation;
local_result.power.writeOp.dynamic *= sckRation;
local_result.power.searchOp.dynamic *= sckRation;
local_result.power.readOp.leakage *= l_ip.nbanks;
local_result.power.readOp.longer_channel_leakage =
local_result.power.readOp.leakage * long_channel_device_reduction;
local_result.power = local_result.power * pppm_t;
local_result.data_array2->power.readOp.dynamic *= sckRation;
local_result.data_array2->power.writeOp.dynamic *= sckRation;
local_result.data_array2->power.searchOp.dynamic *= sckRation;
local_result.data_array2->power.readOp.leakage *= l_ip.nbanks;
local_result.data_array2->power.readOp.longer_channel_leakage =
local_result.data_array2->power.readOp.leakage *
long_channel_device_reduction;
local_result.data_array2->power = local_result.data_array2->power * pppm_t;
if (!(l_ip.pure_cam || l_ip.pure_ram || l_ip.fully_assoc) && l_ip.is_cache) {
local_result.tag_array2->power.readOp.dynamic *= sckRation;
local_result.tag_array2->power.writeOp.dynamic *= sckRation;
local_result.tag_array2->power.searchOp.dynamic *= sckRation;
local_result.tag_array2->power.readOp.leakage *= l_ip.nbanks;
local_result.tag_array2->power.readOp.longer_channel_leakage =
local_result.tag_array2->power.readOp.leakage *
long_channel_device_reduction;
local_result.tag_array2->power =
local_result.tag_array2->power * pppm_t;
}
}
void CacheArray::compute_base_power() {
local_result = cacti_interface(&l_ip);
}
void CacheArray::computeArea() {
area.set_area(local_result.area);
output_data.area = local_result.area / 1e6;
}
void CacheArray::computeEnergy() {
// Set the leakage power numbers
output_data.subthreshold_leakage_power = local_result.power.readOp.leakage;
output_data.gate_leakage_power = local_result.power.readOp.gate_leakage;
if (l_ip.assoc && l_ip.is_cache) {
// This is a standard cache array with data and tags
// Calculate peak dynamic power
output_data.peak_dynamic_power =
(local_result.tag_array2->power.readOp.dynamic +
local_result.data_array2->power.readOp.dynamic) *
tdp_stats.readAc.hit +
(local_result.tag_array2->power.readOp.dynamic) *
tdp_stats.readAc.miss +
(local_result.tag_array2->power.readOp.dynamic +
local_result.data_array2->power.writeOp.dynamic) *
tdp_stats.writeAc.hit +
(local_result.tag_array2->power.readOp.dynamic) *
tdp_stats.writeAc.miss;
output_data.peak_dynamic_power *= clockRate;
// Calculate the runtime dynamic power
output_data.runtime_dynamic_energy =
local_result.data_array2->power.readOp.dynamic *
rtp_stats.dataReadAc.access +
local_result.data_array2->power.writeOp.dynamic *
rtp_stats.dataWriteAc.access +
(local_result.tag_array2->power.readOp.dynamic *
rtp_stats.tagReadAc.access +
local_result.tag_array2->power.writeOp.dynamic *
rtp_stats.tagWriteAc.access) * l_ip.assoc;
} else {
// Calculate peak dynamic power
output_data.peak_dynamic_power =
local_result.power.readOp.dynamic * tdp_stats.readAc.access +
local_result.power.writeOp.dynamic * tdp_stats.writeAc.access +
local_result.power.searchOp.dynamic * tdp_stats.searchAc.access;
output_data.peak_dynamic_power *= clockRate;
// Calculate the runtime dynamic power
output_data.runtime_dynamic_energy =
local_result.power.readOp.dynamic * rtp_stats.readAc.access +
local_result.power.writeOp.dynamic * rtp_stats.writeAc.access +
local_result.power.searchOp.dynamic * rtp_stats.searchAc.access;
}
// An SBT directory has more dynamic power
if (sbt_dir_overhead > 0) {
// Calculate peak dynamic power
output_data.peak_dynamic_power +=
(computeSBTDynEnergy(&sbt_tdp_stats) * clockRate);
// Calculate the runtime dynamic power
output_data.runtime_dynamic_energy +=
computeSBTDynEnergy(&sbt_rtp_stats);
}
}
CacheArray::~CacheArray() {
local_result.cleanup();
}