| /* |
| * Copyright (c) 2012-2014, TU Delft |
| * Copyright (c) 2012-2014, TU Eindhoven |
| * Copyright (c) 2012-2014, TU Kaiserslautern |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * 3. Neither the name of the copyright holder nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
| * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED |
| * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Karthik Chandrasekar |
| * Matthias Jung |
| * Omar Naji |
| * Subash Kannoth |
| * Éder F. Zulian |
| * Felipe S. Prado |
| * |
| */ |
| |
| #include "MemoryPowerModel.h" |
| |
| #include <stdint.h> |
| |
| #include <cmath> // For pow |
| #include <iostream> // fmtflags |
| #include <algorithm> |
| |
| using namespace std; |
| using namespace Data; |
| |
| MemoryPowerModel::MemoryPowerModel() |
| { |
| total_cycles = 0; |
| energy.total_energy = 0; |
| } |
| |
| // Calculate energy and average power consumption for the given command trace |
| |
| void MemoryPowerModel::power_calc(const MemorySpecification& memSpec, |
| const CommandAnalysis& c, |
| int term, |
| const MemBankWiseParams& bwPowerParams) |
| { |
| const MemTimingSpec& t = memSpec.memTimingSpec; |
| const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec; |
| const MemPowerSpec& mps = memSpec.memPowerSpec; |
| const int64_t nbrofBanks = memSpec.memArchSpec.nbrOfBanks; |
| |
| energy.act_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.pre_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.read_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.write_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.ref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.refb_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.act_stdby_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.pre_stdby_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.idle_energy_act_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.idle_energy_pre_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.f_act_pd_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.f_pre_pd_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.s_act_pd_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.s_pre_pd_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.ref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.sref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.sref_ref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.sref_ref_act_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.sref_ref_pre_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.spup_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.spup_ref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.spup_ref_act_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.spup_ref_pre_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.pup_act_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.pup_pre_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| energy.total_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0); |
| |
| energy.act_energy = 0.0; |
| energy.pre_energy = 0.0; |
| energy.read_energy = 0.0; |
| energy.write_energy = 0.0; |
| energy.ref_energy = 0.0; |
| energy.act_stdby_energy = 0.0; |
| energy.pre_stdby_energy = 0.0; |
| energy.idle_energy_act = 0.0; |
| energy.idle_energy_pre = 0.0; |
| energy.window_energy = 0.0; |
| energy.f_act_pd_energy = 0.0; |
| energy.f_pre_pd_energy = 0.0; |
| energy.s_act_pd_energy = 0.0; |
| energy.s_pre_pd_energy = 0.0; |
| energy.sref_energy = 0.0; |
| energy.sref_ref_energy = 0.0; |
| energy.sref_ref_act_energy = 0.0; |
| energy.sref_ref_pre_energy = 0.0; |
| energy.spup_energy = 0.0; |
| energy.spup_ref_energy = 0.0; |
| energy.spup_ref_act_energy = 0.0; |
| energy.spup_ref_pre_energy = 0.0; |
| energy.pup_act_energy = 0.0; |
| energy.pup_pre_energy = 0.0; |
| power.IO_power = 0.0; |
| power.WR_ODT_power = 0.0; |
| power.TermRD_power = 0.0; |
| power.TermWR_power = 0.0; |
| energy.read_io_energy = 0.0; |
| energy.write_term_energy = 0.0; |
| energy.read_oterm_energy = 0.0; |
| energy.write_oterm_energy = 0.0; |
| energy.io_term_energy = 0.0; |
| |
| // How long a single burst takes, measured in command-clock cycles. |
| int64_t burstCc = memArchSpec.burstLength / memArchSpec.dataRate; |
| |
| // IO and Termination Power measures are included, if required. |
| if (term) { |
| io_term_power(memSpec); |
| |
| // memArchSpec.width represents the number of data (dq) pins. |
| // 1 DQS pin is associated with every data byte |
| int64_t dqPlusDqsBits = memArchSpec.width + memArchSpec.width / 8; |
| // 1 DQS and 1 DM pin is associated with every data byte |
| int64_t dqPlusDqsPlusMaskBits = memArchSpec.width + memArchSpec.width / 8 + memArchSpec.width / 8; |
| // Size of one clock period for the data bus. |
| double ddrPeriod = t.clkPeriod / static_cast<double>(memArchSpec.dataRate); |
| |
| // Read IO power is consumed by each DQ (data) and DQS (data strobe) pin |
| energy.read_io_energy = calcIoTermEnergy(sum(c.numberofreadsBanks) * memArchSpec.burstLength, |
| ddrPeriod, |
| power.IO_power, |
| dqPlusDqsBits); |
| |
| // Write ODT power is consumed by each DQ (data), DQS (data strobe) and DM |
| energy.write_term_energy = calcIoTermEnergy(sum(c.numberofwritesBanks) * memArchSpec.burstLength, |
| ddrPeriod, |
| power.WR_ODT_power, |
| dqPlusDqsPlusMaskBits); |
| |
| if (memArchSpec.nbrOfRanks > 1) { |
| // Termination power consumed in the idle rank during reads on the active |
| // rank by each DQ (data) and DQS (data strobe) pin. |
| energy.read_oterm_energy = calcIoTermEnergy(sum(c.numberofreadsBanks) * memArchSpec.burstLength, |
| ddrPeriod, |
| power.TermRD_power, |
| dqPlusDqsBits); |
| |
| // Termination power consumed in the idle rank during writes on the active |
| // rank by each DQ (data), DQS (data strobe) and DM (data mask) pin. |
| energy.write_oterm_energy = calcIoTermEnergy(sum(c.numberofwritesBanks) * memArchSpec.burstLength, |
| ddrPeriod, |
| power.TermWR_power, |
| dqPlusDqsPlusMaskBits); |
| } |
| |
| // Sum of all IO and termination energy |
| energy.io_term_energy = energy.read_io_energy + energy.write_term_energy |
| + energy.read_oterm_energy + energy.write_oterm_energy; |
| } |
| |
| window_cycles = c.actcycles + c.precycles + |
| c.f_act_pdcycles + c.f_pre_pdcycles + |
| c.s_act_pdcycles + c.s_pre_pdcycles + c.sref_cycles |
| + c.sref_ref_act_cycles + c.sref_ref_pre_cycles + |
| c.spup_ref_act_cycles + c.spup_ref_pre_cycles; |
| |
| EnergyDomain vdd0Domain(mps.vdd, t.clkPeriod); |
| |
| energy.act_energy = vdd0Domain.calcTivEnergy(sum(c.numberofactsBanks) * t.RAS , mps.idd0 - mps.idd3n); |
| energy.pre_energy = vdd0Domain.calcTivEnergy(sum(c.numberofpresBanks) * (t.RC - t.RAS) , mps.idd0 - mps.idd2n); |
| energy.read_energy = vdd0Domain.calcTivEnergy(sum(c.numberofreadsBanks) * burstCc , mps.idd4r - mps.idd3n); |
| energy.write_energy = vdd0Domain.calcTivEnergy(sum(c.numberofwritesBanks) * burstCc , mps.idd4w - mps.idd3n); |
| energy.ref_energy = vdd0Domain.calcTivEnergy(c.numberofrefs * t.RFC , mps.idd5 - mps.idd3n); |
| energy.pre_stdby_energy = vdd0Domain.calcTivEnergy(c.precycles, mps.idd2n); |
| energy.act_stdby_energy = vdd0Domain.calcTivEnergy(c.actcycles, mps.idd3n); |
| |
| // Using the number of cycles that at least one bank is active here |
| // But the current iddrho is less than idd3n |
| double iddrho = (static_cast<double>(bwPowerParams.bwPowerFactRho) / 100.0) * (mps.idd3n - mps.idd2n) + mps.idd2n; |
| double esharedActStdby = vdd0Domain.calcTivEnergy(c.actcycles, iddrho); |
| // Fixed componenent for PASR |
| double iddsigma = (static_cast<double>(bwPowerParams.bwPowerFactSigma) / 100.0) * mps.idd6; |
| double esharedPASR = vdd0Domain.calcTivEnergy(c.sref_cycles, iddsigma); |
| // ione is Active background current for a single bank. When a single bank is Active |
| //,all the other remainig (B-1) banks will consume a current of iddrho (based on factor Rho) |
| // So to derrive ione we add (B-1)*iddrho to the idd3n and distribute it to each banks. |
| double ione = (mps.idd3n + (iddrho * (static_cast<double>(nbrofBanks - 1)))) / (static_cast<double>(nbrofBanks)); |
| // If memory specification does not provide bank wise refresh current, |
| // approximate it to single bank background current removed from |
| // single bank active current |
| double idd5Blocal = (mps.idd5B == 0.0) ? (mps.idd0 - ione) :(mps.idd5B); |
| // if memory specification does not provide the REFB timing approximate it |
| // to time of ACT + PRE |
| int64_t tRefBlocal = (t.REFB == 0) ? (t.RAS + t.RP) : (t.REFB); |
| |
| //Distribution of energy componets to each banks |
| for (unsigned i = 0; i < nbrofBanks; i++) { |
| energy.act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofactsBanks[i] * t.RAS, mps.idd0 - ione); |
| energy.pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofpresBanks[i] * (t.RP), mps.idd0 - ione); |
| energy.read_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofreadsBanks[i] * burstCc, mps.idd4r - mps.idd3n); |
| energy.write_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofwritesBanks[i] * burstCc, mps.idd4w - mps.idd3n); |
| energy.ref_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofrefs * t.RFC, mps.idd5 - mps.idd3n) / static_cast<double>(nbrofBanks); |
| energy.refb_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofrefbBanks[i] * tRefBlocal, idd5Blocal); |
| energy.pre_stdby_energy_banks[i] = vdd0Domain.calcTivEnergy(c.precycles, mps.idd2n) / static_cast<double>(nbrofBanks); |
| energy.act_stdby_energy_banks[i] = vdd0Domain.calcTivEnergy(c.actcyclesBanks[i], (mps.idd3n - iddrho) / static_cast<double>(nbrofBanks)) |
| + esharedActStdby / static_cast<double>(nbrofBanks); |
| energy.idle_energy_act_banks[i] = vdd0Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n) / static_cast<double>(nbrofBanks); |
| energy.idle_energy_pre_banks[i] = vdd0Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n) / static_cast<double>(nbrofBanks); |
| energy.f_act_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p1) / static_cast<double>(nbrofBanks); |
| energy.f_pre_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p1) / static_cast<double>(nbrofBanks); |
| energy.s_act_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.s_act_pdcycles, mps.idd3p0) / static_cast<double>(nbrofBanks); |
| energy.s_pre_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.s_pre_pdcycles, mps.idd2p0) / static_cast<double>(nbrofBanks); |
| |
| energy.sref_energy_banks[i] = engy_sref_banks(mps.idd6, mps.idd3n, |
| mps.idd5, mps.vdd, |
| static_cast<double>(c.sref_cycles), static_cast<double>(c.sref_ref_act_cycles), |
| static_cast<double>(c.sref_ref_pre_cycles), static_cast<double>(c.spup_ref_act_cycles), |
| static_cast<double>(c.spup_ref_pre_cycles), t.clkPeriod,esharedPASR,bwPowerParams,i,nbrofBanks |
| ); |
| energy.sref_ref_act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.sref_ref_act_cycles, mps.idd3p0) / static_cast<double>(nbrofBanks); |
| energy.sref_ref_pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.sref_ref_pre_cycles, mps.idd2p0) / static_cast<double>(nbrofBanks); |
| energy.sref_ref_energy_banks[i] = energy.sref_ref_act_energy_banks[i] + energy.sref_ref_pre_energy_banks[i] ;// |
| |
| energy.spup_energy_banks[i] = vdd0Domain.calcTivEnergy(c.spup_cycles, mps.idd2n) / static_cast<double>(nbrofBanks); |
| energy.spup_ref_act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.spup_ref_act_cycles, mps.idd3n) / static_cast<double>(nbrofBanks);// |
| energy.spup_ref_pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.spup_ref_pre_cycles, mps.idd2n) / static_cast<double>(nbrofBanks); |
| energy.spup_ref_energy_banks[i] = ( energy.spup_ref_act_energy + energy.spup_ref_pre_energy ) / static_cast<double>(nbrofBanks); |
| energy.pup_act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.pup_act_cycles, mps.idd3n) / static_cast<double>(nbrofBanks); |
| energy.pup_pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n) / static_cast<double>(nbrofBanks); |
| } |
| |
| // Idle energy in the active standby clock cycles |
| energy.idle_energy_act = vdd0Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n); |
| // Idle energy in the precharge standby clock cycles |
| energy.idle_energy_pre = vdd0Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n); |
| // fast-exit active power-down cycles energy |
| energy.f_act_pd_energy = vdd0Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p1); |
| // fast-exit precharged power-down cycles energy |
| energy.f_pre_pd_energy = vdd0Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p1); |
| // slow-exit active power-down cycles energy |
| energy.s_act_pd_energy = vdd0Domain.calcTivEnergy(c.s_act_pdcycles, mps.idd3p0); |
| // slow-exit precharged power-down cycles energy |
| energy.s_pre_pd_energy = vdd0Domain.calcTivEnergy(c.s_pre_pdcycles, mps.idd2p0); |
| |
| // self-refresh cycles energy including a refresh per self-refresh entry |
| energy.sref_energy = engy_sref(mps.idd6, mps.idd3n, |
| mps.idd5, mps.vdd, |
| static_cast<double>(c.sref_cycles), static_cast<double>(c.sref_ref_act_cycles), |
| static_cast<double>(c.sref_ref_pre_cycles), static_cast<double>(c.spup_ref_act_cycles), |
| static_cast<double>(c.spup_ref_pre_cycles), t.clkPeriod); |
| |
| // background energy during active auto-refresh cycles in self-refresh |
| energy.sref_ref_act_energy = vdd0Domain.calcTivEnergy(c.sref_ref_act_cycles, mps.idd3p0); |
| // background energy during precharged auto-refresh cycles in self-refresh |
| energy.sref_ref_pre_energy = vdd0Domain.calcTivEnergy(c.sref_ref_pre_cycles, mps.idd2p0); |
| // background energy during active auto-refresh cycles in self-refresh exit |
| energy.spup_ref_act_energy = vdd0Domain.calcTivEnergy(c.spup_ref_act_cycles, mps.idd3n); |
| // background energy during precharged auto-refresh cycles in self-refresh exit |
| energy.spup_ref_pre_energy = vdd0Domain.calcTivEnergy(c.spup_ref_pre_cycles, mps.idd2n); |
| // self-refresh power-up cycles energy -- included |
| energy.spup_energy = vdd0Domain.calcTivEnergy(c.spup_cycles, mps.idd2n); |
| // active power-up cycles energy - same as active standby -- included |
| energy.pup_act_energy = vdd0Domain.calcTivEnergy(c.pup_act_cycles, mps.idd3n); |
| // precharged power-up cycles energy - same as precharged standby -- included |
| energy.pup_pre_energy = vdd0Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n); |
| |
| // similar equations as before to support multiple voltage domains in LPDDR2 |
| // and WIDEIO memories |
| if (memArchSpec.twoVoltageDomains) { |
| EnergyDomain vdd2Domain(mps.vdd2, t.clkPeriod); |
| |
| energy.act_energy += vdd2Domain.calcTivEnergy(sum(c.numberofactsBanks) * t.RAS , mps.idd02 - mps.idd3n2); |
| energy.pre_energy += vdd2Domain.calcTivEnergy(sum(c.numberofpresBanks) * (t.RC - t.RAS) , mps.idd02 - mps.idd2n2); |
| energy.read_energy += vdd2Domain.calcTivEnergy(sum(c.numberofreadsBanks) * burstCc , mps.idd4r2 - mps.idd3n2); |
| energy.write_energy += vdd2Domain.calcTivEnergy(sum(c.numberofwritesBanks) * burstCc , mps.idd4w2 - mps.idd3n2); |
| energy.ref_energy += vdd2Domain.calcTivEnergy(c.numberofrefs * t.RFC , mps.idd52 - mps.idd3n2); |
| energy.pre_stdby_energy += vdd2Domain.calcTivEnergy(c.precycles, mps.idd2n2); |
| energy.act_stdby_energy += vdd2Domain.calcTivEnergy(c.actcycles, mps.idd3n2); |
| |
| // Idle energy in the active standby clock cycles |
| energy.idle_energy_act += vdd2Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n2); |
| // Idle energy in the precharge standby clock cycles |
| energy.idle_energy_pre += vdd2Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n2); |
| // fast-exit active power-down cycles energy |
| energy.f_act_pd_energy += vdd2Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p12); |
| // fast-exit precharged power-down cycles energy |
| energy.f_pre_pd_energy += vdd2Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p12); |
| // slow-exit active power-down cycles energy |
| energy.s_act_pd_energy += vdd2Domain.calcTivEnergy(c.s_act_pdcycles, mps.idd3p02); |
| // slow-exit precharged power-down cycles energy |
| energy.s_pre_pd_energy += vdd2Domain.calcTivEnergy(c.s_pre_pdcycles, mps.idd2p02); |
| |
| energy.sref_energy += engy_sref(mps.idd62, mps.idd3n2, |
| mps.idd52, mps.vdd2, |
| static_cast<double>(c.sref_cycles), static_cast<double>(c.sref_ref_act_cycles), |
| static_cast<double>(c.sref_ref_pre_cycles), static_cast<double>(c.spup_ref_act_cycles), |
| static_cast<double>(c.spup_ref_pre_cycles), t.clkPeriod); |
| |
| // background energy during active auto-refresh cycles in self-refresh |
| energy.sref_ref_act_energy += vdd2Domain.calcTivEnergy(c.sref_ref_act_cycles, mps.idd3p02); |
| // background energy during precharged auto-refresh cycles in self-refresh |
| energy.sref_ref_pre_energy += vdd2Domain.calcTivEnergy(c.sref_ref_pre_cycles, mps.idd2p02); |
| // background energy during active auto-refresh cycles in self-refresh exit |
| energy.spup_ref_act_energy += vdd2Domain.calcTivEnergy(c.spup_ref_act_cycles, mps.idd3n2); |
| // background energy during precharged auto-refresh cycles in self-refresh exit |
| energy.spup_ref_pre_energy += vdd2Domain.calcTivEnergy(c.spup_ref_pre_cycles, mps.idd2n2); |
| // self-refresh power-up cycles energy -- included |
| energy.spup_energy += vdd2Domain.calcTivEnergy(c.spup_cycles, mps.idd2n2); |
| // active power-up cycles energy - same as active standby -- included |
| energy.pup_act_energy += vdd2Domain.calcTivEnergy(c.pup_act_cycles, mps.idd3n2); |
| // precharged power-up cycles energy - same as precharged standby -- included |
| energy.pup_pre_energy += vdd2Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n2); |
| } |
| |
| // auto-refresh energy during self-refresh cycles |
| energy.sref_ref_energy = energy.sref_ref_act_energy + energy.sref_ref_pre_energy; |
| |
| // auto-refresh energy during self-refresh exit cycles |
| energy.spup_ref_energy = energy.spup_ref_act_energy + energy.spup_ref_pre_energy; |
| |
| // adding all energy components for the active rank and all background and idle |
| // energy components for both ranks (in a dual-rank system) |
| |
| if (bwPowerParams.bwMode) { |
| // Calculate total energy per bank. |
| for (unsigned i = 0; i < nbrofBanks; i++) { |
| energy.total_energy_banks[i] = energy.act_energy_banks[i] + energy.pre_energy_banks[i] + energy.read_energy_banks[i] |
| + energy.ref_energy_banks[i] + energy.write_energy_banks[i] + energy.refb_energy_banks[i] |
| + static_cast<double>(memArchSpec.nbrOfRanks) * energy.act_stdby_energy_banks[i] |
| + energy.pre_stdby_energy_banks[i] + energy.f_pre_pd_energy_banks[i] + energy.s_act_pd_energy_banks[i] |
| + energy.s_pre_pd_energy_banks[i]+ energy.sref_ref_energy_banks[i] + energy.spup_ref_energy_banks[i]; |
| } |
| // Calculate total energy for all banks. |
| energy.window_energy = sum(energy.total_energy_banks) + energy.io_term_energy; |
| |
| } else { |
| energy.window_energy = energy.act_energy + energy.pre_energy + energy.read_energy + energy.write_energy |
| + energy.ref_energy + energy.io_term_energy + sum(energy.refb_energy_banks) |
| + static_cast<double>(memArchSpec.nbrOfRanks) * (energy.act_stdby_energy |
| + energy.pre_stdby_energy + energy.sref_energy + energy.f_act_pd_energy |
| + energy.f_pre_pd_energy + energy.s_act_pd_energy + energy.s_pre_pd_energy |
| + energy.sref_ref_energy + energy.spup_ref_energy); |
| } |
| |
| power.window_average_power = energy.window_energy / (static_cast<double>(window_cycles) * t.clkPeriod); |
| |
| total_cycles += window_cycles; |
| |
| energy.total_energy += energy.window_energy; |
| |
| // Calculate the average power consumption |
| power.average_power = energy.total_energy / (static_cast<double>(total_cycles) * t.clkPeriod); |
| } // MemoryPowerModel::power_calc |
| |
| void MemoryPowerModel::power_print(const MemorySpecification& memSpec, int term, const CommandAnalysis& c, bool bankwiseMode) const |
| { |
| const MemTimingSpec& memTimingSpec = memSpec.memTimingSpec; |
| const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec; |
| const uint64_t nRanks = static_cast<uint64_t>(memArchSpec.nbrOfRanks); |
| const char eUnit[] = " pJ"; |
| const int64_t nbrofBanks = memSpec.memArchSpec.nbrOfBanks; |
| double nRanksDouble = static_cast<double>(nRanks); |
| |
| ios_base::fmtflags flags = cout.flags(); |
| streamsize precision = cout.precision(); |
| cout.precision(0); |
| |
| if (bankwiseMode) { |
| cout << endl << "* Bankwise Details:"; |
| for (unsigned i = 0; i < nbrofBanks; i++) { |
| cout << endl << "## @ Bank " << i << fixed |
| << endl << " #ACT commands: " << c.numberofactsBanks[i] |
| << endl << " #RD + #RDA commands: " << c.numberofreadsBanks[i] |
| << endl << " #WR + #WRA commands: " << c.numberofwritesBanks[i] |
| << endl << " #PRE (+ PREA) commands: " << c.numberofpresBanks[i]; |
| } |
| cout << endl; |
| } |
| |
| cout << endl << "* Trace Details:" << fixed << endl |
| << endl << "#ACT commands: " << sum(c.numberofactsBanks) |
| << endl << "#RD + #RDA commands: " << sum(c.numberofreadsBanks) |
| << endl << "#WR + #WRA commands: " << sum(c.numberofwritesBanks) |
| /* #PRE commands (precharge all counts a number of #PRE commands equal to the number of active banks) */ |
| << endl << "#PRE (+ PREA) commands: " << sum(c.numberofpresBanks) |
| << endl << "#REF commands: " << c.numberofrefs |
| << endl << "#REFB commands: " << sum(c.numberofrefbBanks) |
| << endl << "#Active Cycles: " << c.actcycles |
| << endl << " #Active Idle Cycles: " << c.idlecycles_act |
| << endl << " #Active Power-Up Cycles: " << c.pup_act_cycles |
| << endl << " #Auto-Refresh Active cycles during Self-Refresh Power-Up: " << c.spup_ref_act_cycles |
| << endl << "#Precharged Cycles: " << c.precycles |
| << endl << " #Precharged Idle Cycles: " << c.idlecycles_pre |
| << endl << " #Precharged Power-Up Cycles: " << c.pup_pre_cycles |
| << endl << " #Auto-Refresh Precharged cycles during Self-Refresh Power-Up: " << c.spup_ref_pre_cycles |
| << endl << " #Self-Refresh Power-Up Cycles: " << c.spup_cycles |
| << endl << "Total Idle Cycles (Active + Precharged): " << c.idlecycles_act + c.idlecycles_pre |
| << endl << "#Power-Downs: " << c.f_act_pdns + c.s_act_pdns + c.f_pre_pdns + c.s_pre_pdns |
| << endl << " #Active Fast-exit Power-Downs: " << c.f_act_pdns |
| << endl << " #Active Slow-exit Power-Downs: " << c.s_act_pdns |
| << endl << " #Precharged Fast-exit Power-Downs: " << c.f_pre_pdns |
| << endl << " #Precharged Slow-exit Power-Downs: " << c.s_pre_pdns |
| << endl << "#Power-Down Cycles: " << c.f_act_pdcycles + c.s_act_pdcycles + c.f_pre_pdcycles + c.s_pre_pdcycles |
| << endl << " #Active Fast-exit Power-Down Cycles: " << c.f_act_pdcycles |
| << endl << " #Active Slow-exit Power-Down Cycles: " << c.s_act_pdcycles |
| << endl << " #Auto-Refresh Active cycles during Self-Refresh: " << c.sref_ref_act_cycles |
| << endl << " #Precharged Fast-exit Power-Down Cycles: " << c.f_pre_pdcycles |
| << endl << " #Precharged Slow-exit Power-Down Cycles: " << c.s_pre_pdcycles |
| << endl << " #Auto-Refresh Precharged cycles during Self-Refresh: " << c.sref_ref_pre_cycles |
| << endl << "#Auto-Refresh Cycles: " << c.numberofrefs * memTimingSpec.RFC |
| << endl << "#Self-Refreshes: " << c.numberofsrefs |
| << endl << "#Self-Refresh Cycles: " << c.sref_cycles |
| << endl << "----------------------------------------" |
| << endl << "Total Trace Length (clock cycles): " << total_cycles |
| << endl << "----------------------------------------" << endl; |
| |
| if (bankwiseMode) { |
| cout << endl << "* Bankwise Details:"; |
| for (unsigned i = 0; i < nbrofBanks; i++) { |
| cout << endl << "## @ Bank " << i << fixed |
| << endl << " ACT Cmd Energy: " << energy.act_energy_banks[i] << eUnit |
| << endl << " PRE Cmd Energy: " << energy.pre_energy_banks[i] << eUnit |
| << endl << " RD Cmd Energy: " << energy.read_energy_banks[i] << eUnit |
| << endl << " WR Cmd Energy: " << energy.write_energy_banks[i] << eUnit |
| << endl << " Auto-Refresh Energy: " << energy.ref_energy_banks[i] << eUnit |
| << endl << " Bankwise-Refresh Energy: " << energy.refb_energy_banks[i] << eUnit |
| << endl << " ACT Stdby Energy: " << nRanksDouble * energy.act_stdby_energy_banks[i] << eUnit |
| << endl << " PRE Stdby Energy: " << nRanksDouble * energy.pre_stdby_energy_banks[i] << eUnit |
| << endl << " Active Idle Energy: "<< nRanksDouble * energy.idle_energy_act_banks[i] << eUnit |
| << endl << " Precharge Idle Energy: "<< nRanksDouble * energy.idle_energy_pre_banks[i] << eUnit |
| << endl << " Fast-Exit Active Power-Down Energy: "<< nRanksDouble * energy.f_act_pd_energy_banks[i] << eUnit |
| << endl << " Fast-Exit Precharged Power-Down Energy: "<< nRanksDouble * energy.f_pre_pd_energy_banks[i] << eUnit |
| << endl << " Slow-Exit Active Power-Down Energy: "<< nRanksDouble * energy.s_act_pd_energy_banks[i] << eUnit |
| << endl << " Slow-Exit Precharged Power-Down Energy: "<< nRanksDouble * energy.s_pre_pd_energy_banks[i] << eUnit |
| << endl << " Self-Refresh Energy: "<< nRanksDouble * energy.sref_energy_banks[i] << eUnit |
| << endl << " Slow-Exit Active Power-Down Energy during Auto-Refresh cycles in Self-Refresh: "<< nRanksDouble * energy.sref_ref_act_energy_banks[i] << eUnit |
| << endl << " Slow-Exit Precharged Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_pre_energy_banks[i] << eUnit |
| << endl << " Self-Refresh Power-Up Energy: "<< nRanksDouble * energy.spup_energy_banks[i] << eUnit |
| << endl << " Active Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: "<< nRanksDouble * energy.spup_ref_act_energy_banks[i] << eUnit |
| << endl << " Precharge Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: "<< nRanksDouble * energy.spup_ref_pre_energy_banks[i] << eUnit |
| << endl << " Active Power-Up Energy: "<< nRanksDouble * energy.pup_act_energy_banks[i] << eUnit |
| << endl << " Precharged Power-Up Energy: "<< nRanksDouble * energy.pup_pre_energy_banks[i] << eUnit |
| << endl << " Total Energy: "<< energy.total_energy_banks[i] << eUnit |
| << endl; |
| } |
| cout << endl; |
| } |
| |
| cout.precision(2); |
| cout << endl << "* Trace Power and Energy Estimates:" << endl |
| << endl << "ACT Cmd Energy: " << energy.act_energy << eUnit |
| << endl << "PRE Cmd Energy: " << energy.pre_energy << eUnit |
| << endl << "RD Cmd Energy: " << energy.read_energy << eUnit |
| << endl << "WR Cmd Energy: " << energy.write_energy << eUnit; |
| |
| if (term) { |
| cout << endl << "RD I/O Energy: " << energy.read_io_energy << eUnit << endl; |
| // No Termination for LPDDR/2/3 and DDR memories |
| if (memSpec.memArchSpec.termination) { |
| cout << "WR Termination Energy: " << energy.write_term_energy << eUnit << endl; |
| } |
| |
| if (nRanks > 1 && memSpec.memArchSpec.termination) { |
| cout << "RD Termination Energy (Idle rank): " << energy.read_oterm_energy << eUnit |
| << endl << "WR Termination Energy (Idle rank): " << energy.write_oterm_energy << eUnit << endl; |
| } |
| } |
| |
| cout << "ACT Stdby Energy: " << nRanksDouble * energy.act_stdby_energy << eUnit |
| << endl << " Active Idle Energy: " << nRanksDouble * energy.idle_energy_act << eUnit |
| << endl << " Active Power-Up Energy: " << nRanksDouble * energy.pup_act_energy << eUnit |
| << endl << " Active Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: " << nRanksDouble * energy.spup_ref_act_energy << eUnit |
| << endl << "PRE Stdby Energy: " << nRanksDouble * energy.pre_stdby_energy << eUnit |
| << endl << " Precharge Idle Energy: " << nRanksDouble * energy.idle_energy_pre << eUnit |
| << endl << " Precharged Power-Up Energy: " << nRanksDouble * energy.pup_pre_energy << eUnit |
| << endl << " Precharge Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: " << nRanksDouble * energy.spup_ref_pre_energy << eUnit |
| << endl << " Self-Refresh Power-Up Energy: " << nRanksDouble * energy.spup_energy << eUnit |
| << endl << "Total Idle Energy (Active + Precharged): " << nRanksDouble * (energy.idle_energy_act + energy.idle_energy_pre) << eUnit |
| << endl << "Total Power-Down Energy: " << nRanksDouble * (energy.f_act_pd_energy + energy.f_pre_pd_energy + energy.s_act_pd_energy + energy.s_pre_pd_energy) << eUnit |
| << endl << " Fast-Exit Active Power-Down Energy: " << nRanksDouble * energy.f_act_pd_energy << eUnit |
| << endl << " Slow-Exit Active Power-Down Energy: " << nRanksDouble * energy.s_act_pd_energy << eUnit |
| << endl << " Slow-Exit Active Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_act_energy << eUnit |
| << endl << " Fast-Exit Precharged Power-Down Energy: " << nRanksDouble * energy.f_pre_pd_energy << eUnit |
| << endl << " Slow-Exit Precharged Power-Down Energy: " << nRanksDouble * energy.s_pre_pd_energy << eUnit |
| << endl << " Slow-Exit Precharged Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_pre_energy << eUnit |
| << endl << "Auto-Refresh Energy: " << energy.ref_energy << eUnit |
| << endl << "Bankwise-Refresh Energy: " << sum(energy.refb_energy_banks) << eUnit |
| << endl << "Self-Refresh Energy: " << nRanksDouble * energy.sref_energy << eUnit |
| << endl << "----------------------------------------" |
| << endl << "Total Trace Energy: " << energy.total_energy << eUnit |
| << endl << "Average Power: " << power.average_power << " mW" |
| << endl << "----------------------------------------" << endl; |
| |
| cout.flags(flags); |
| cout.precision(precision); |
| } // MemoryPowerModel::power_print |
| |
| // Self-refresh active energy estimation (not including background energy) |
| double MemoryPowerModel::engy_sref(double idd6, double idd3n, double idd5, |
| double vdd, double sref_cycles, double sref_ref_act_cycles, |
| double sref_ref_pre_cycles, double spup_ref_act_cycles, |
| double spup_ref_pre_cycles, double clk) |
| { |
| double sref_energy; |
| |
| sref_energy = ((idd6 * sref_cycles) + ((idd5 - idd3n) * (sref_ref_act_cycles |
| + spup_ref_act_cycles + sref_ref_pre_cycles + spup_ref_pre_cycles))) |
| * vdd * clk; |
| return sref_energy; |
| } |
| |
| // Self-refresh active energy estimation per banks |
| double MemoryPowerModel::engy_sref_banks(double idd6, double idd3n, double idd5, |
| double vdd, double sref_cycles, double sref_ref_act_cycles, |
| double sref_ref_pre_cycles, double spup_ref_act_cycles, |
| double spup_ref_pre_cycles, double clk, |
| double esharedPASR, const MemBankWiseParams& bwPowerParams, |
| unsigned bnkIdx, int64_t nbrofBanks) |
| { |
| // Bankwise Self-refresh energy |
| double sref_energy_banks; |
| // Dynamic componenents for PASR energy varying based on PASR mode |
| double iddsigmaDynBanks; |
| double pasr_energy_dyn; |
| // This component is distributed among all banks |
| double sref_energy_shared; |
| //Is PASR Active |
| if (bwPowerParams.flgPASR){ |
| sref_energy_shared = (((idd5 - idd3n) * (sref_ref_act_cycles |
| + spup_ref_act_cycles + sref_ref_pre_cycles + spup_ref_pre_cycles)) * vdd * clk) |
| / static_cast<double>(nbrofBanks); |
| //if the bank is active under current PASR mode |
| if (bwPowerParams.isBankActiveInPasr(bnkIdx)){ |
| // Distribute the sref energy to the active banks |
| iddsigmaDynBanks = (static_cast<double>(100 - bwPowerParams.bwPowerFactSigma) / (100.0 * static_cast<double>(nbrofBanks))) * idd6; |
| pasr_energy_dyn = vdd * iddsigmaDynBanks * sref_cycles; |
| // Add the static components |
| sref_energy_banks = sref_energy_shared + pasr_energy_dyn + (esharedPASR /static_cast<double>(nbrofBanks)); |
| |
| }else{ |
| sref_energy_banks = (esharedPASR /static_cast<double>(nbrofBanks)); |
| } |
| } |
| //When PASR is not active total all the banks are in Self-Refresh. Thus total Self-Refresh energy is distributed across all banks |
| else{ |
| |
| |
| sref_energy_banks = (((idd6 * sref_cycles) + ((idd5 - idd3n) * (sref_ref_act_cycles |
| + spup_ref_act_cycles + sref_ref_pre_cycles + spup_ref_pre_cycles))) |
| * vdd * clk) |
| / static_cast<double>(nbrofBanks); |
| } |
| return sref_energy_banks; |
| } |
| |
| |
| // IO and Termination power calculation based on Micron Power Calculators |
| // Absolute power measures are obtained from Micron Power Calculator (mentioned in mW) |
| void MemoryPowerModel::io_term_power(const MemorySpecification& memSpec) |
| { |
| const MemTimingSpec& memTimingSpec = memSpec.memTimingSpec; |
| const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec; |
| const MemPowerSpec& memPowerSpec = memSpec.memPowerSpec; |
| |
| power.IO_power = memPowerSpec.ioPower; // in mW |
| power.WR_ODT_power = memPowerSpec.wrOdtPower; // in mW |
| |
| if (memArchSpec.nbrOfRanks > 1) { |
| power.TermRD_power = memPowerSpec.termRdPower; // in mW |
| power.TermWR_power = memPowerSpec.termWrPower; // in mW |
| } |
| |
| if (memPowerSpec.capacitance != 0.0) { |
| // If capacity is given, then IO Power depends on DRAM clock frequency. |
| power.IO_power = memPowerSpec.capacitance * 0.5 * pow(memPowerSpec.vdd2, 2.0) * memTimingSpec.clkMhz * 1000000; |
| } |
| } // MemoryPowerModel::io_term_power |
| |
| |
| double MemoryPowerModel::calcIoTermEnergy(int64_t cycles, double period, double power, int64_t numBits) const |
| { |
| return static_cast<double>(cycles) * period * power * static_cast<double>(numBits); |
| } |
| |
| // time (t) * current (I) * voltage (V) energy calculation |
| double EnergyDomain::calcTivEnergy(int64_t cycles, double current) const |
| { |
| return static_cast<double>(cycles) * clkPeriod * current * voltage; |
| } |
| |