| /* |
| * Copyright (c) 2010-2020 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2013 Amin Farmahini-Farahani |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "mem/hetero_mem_ctrl.hh" |
| |
| #include "base/trace.hh" |
| #include "debug/DRAM.hh" |
| #include "debug/Drain.hh" |
| #include "debug/MemCtrl.hh" |
| #include "debug/NVM.hh" |
| #include "debug/QOS.hh" |
| #include "mem/dram_interface.hh" |
| #include "mem/mem_interface.hh" |
| #include "mem/nvm_interface.hh" |
| #include "sim/system.hh" |
| |
| namespace gem5 |
| { |
| |
| namespace memory |
| { |
| |
| HeteroMemCtrl::HeteroMemCtrl(const HeteroMemCtrlParams &p) : |
| MemCtrl(p), |
| nvm(p.nvm) |
| { |
| DPRINTF(MemCtrl, "Setting up controller\n"); |
| readQueue.resize(p.qos_priorities); |
| writeQueue.resize(p.qos_priorities); |
| |
| fatal_if(dynamic_cast<DRAMInterface*>(dram) == nullptr, |
| "HeteroMemCtrl's dram interface must be of type DRAMInterface.\n"); |
| fatal_if(dynamic_cast<NVMInterface*>(nvm) == nullptr, |
| "HeteroMemCtrl's nvm interface must be of type NVMInterface.\n"); |
| |
| // hook up interfaces to the controller |
| dram->setCtrl(this, commandWindow); |
| nvm->setCtrl(this, commandWindow); |
| |
| readBufferSize = dram->readBufferSize + nvm->readBufferSize; |
| writeBufferSize = dram->writeBufferSize + nvm->writeBufferSize; |
| |
| writeHighThreshold = writeBufferSize * p.write_high_thresh_perc / 100.0; |
| writeLowThreshold = writeBufferSize * p.write_low_thresh_perc / 100.0; |
| |
| // perform a basic check of the write thresholds |
| if (p.write_low_thresh_perc >= p.write_high_thresh_perc) |
| fatal("Write buffer low threshold %d must be smaller than the " |
| "high threshold %d\n", p.write_low_thresh_perc, |
| p.write_high_thresh_perc); |
| } |
| |
| Tick |
| HeteroMemCtrl::recvAtomic(PacketPtr pkt) |
| { |
| Tick latency = 0; |
| |
| if (dram->getAddrRange().contains(pkt->getAddr())) { |
| latency = MemCtrl::recvAtomicLogic(pkt, dram); |
| } else if (nvm->getAddrRange().contains(pkt->getAddr())) { |
| latency = MemCtrl::recvAtomicLogic(pkt, nvm); |
| } else { |
| panic("Can't handle address range for packet %s\n", pkt->print()); |
| } |
| |
| return latency; |
| } |
| |
| bool |
| HeteroMemCtrl::recvTimingReq(PacketPtr pkt) |
| { |
| // This is where we enter from the outside world |
| DPRINTF(MemCtrl, "recvTimingReq: request %s addr %#x size %d\n", |
| pkt->cmdString(), pkt->getAddr(), pkt->getSize()); |
| |
| panic_if(pkt->cacheResponding(), "Should not see packets where cache " |
| "is responding"); |
| |
| panic_if(!(pkt->isRead() || pkt->isWrite()), |
| "Should only see read and writes at memory controller\n"); |
| |
| // Calc avg gap between requests |
| if (prevArrival != 0) { |
| stats.totGap += curTick() - prevArrival; |
| } |
| prevArrival = curTick(); |
| |
| // What type of media does this packet access? |
| bool is_dram; |
| if (dram->getAddrRange().contains(pkt->getAddr())) { |
| is_dram = true; |
| } else if (nvm->getAddrRange().contains(pkt->getAddr())) { |
| is_dram = false; |
| } else { |
| panic("Can't handle address range for packet %s\n", |
| pkt->print()); |
| } |
| |
| // Find out how many memory packets a pkt translates to |
| // If the burst size is equal or larger than the pkt size, then a pkt |
| // translates to only one memory packet. Otherwise, a pkt translates to |
| // multiple memory packets |
| unsigned size = pkt->getSize(); |
| uint32_t burst_size = is_dram ? dram->bytesPerBurst() : |
| nvm->bytesPerBurst(); |
| unsigned offset = pkt->getAddr() & (burst_size - 1); |
| unsigned int pkt_count = divCeil(offset + size, burst_size); |
| |
| // run the QoS scheduler and assign a QoS priority value to the packet |
| qosSchedule( { &readQueue, &writeQueue }, burst_size, pkt); |
| |
| // check local buffers and do not accept if full |
| if (pkt->isWrite()) { |
| assert(size != 0); |
| if (writeQueueFull(pkt_count)) { |
| DPRINTF(MemCtrl, "Write queue full, not accepting\n"); |
| // remember that we have to retry this port |
| retryWrReq = true; |
| stats.numWrRetry++; |
| return false; |
| } else { |
| addToWriteQueue(pkt, pkt_count, is_dram ? dram : nvm); |
| // If we are not already scheduled to get a request out of the |
| // queue, do so now |
| if (!nextReqEvent.scheduled()) { |
| DPRINTF(MemCtrl, "Request scheduled immediately\n"); |
| schedule(nextReqEvent, curTick()); |
| } |
| stats.writeReqs++; |
| stats.bytesWrittenSys += size; |
| } |
| } else { |
| assert(pkt->isRead()); |
| assert(size != 0); |
| if (readQueueFull(pkt_count)) { |
| DPRINTF(MemCtrl, "Read queue full, not accepting\n"); |
| // remember that we have to retry this port |
| retryRdReq = true; |
| stats.numRdRetry++; |
| return false; |
| } else { |
| if (!addToReadQueue(pkt, pkt_count, is_dram ? dram : nvm)) { |
| // If we are not already scheduled to get a request out of the |
| // queue, do so now |
| if (!nextReqEvent.scheduled()) { |
| DPRINTF(MemCtrl, "Request scheduled immediately\n"); |
| schedule(nextReqEvent, curTick()); |
| } |
| } |
| stats.readReqs++; |
| stats.bytesReadSys += size; |
| } |
| } |
| |
| return true; |
| } |
| |
| void |
| HeteroMemCtrl::processRespondEvent(MemInterface* mem_intr, |
| MemPacketQueue& queue, |
| EventFunctionWrapper& resp_event, |
| bool& retry_rd_req) |
| { |
| DPRINTF(MemCtrl, |
| "processRespondEvent(): Some req has reached its readyTime\n"); |
| |
| if (queue.front()->isDram()) { |
| MemCtrl::processRespondEvent(dram, queue, resp_event, retry_rd_req); |
| } else { |
| MemCtrl::processRespondEvent(nvm, queue, resp_event, retry_rd_req); |
| } |
| } |
| |
| MemPacketQueue::iterator |
| HeteroMemCtrl::chooseNext(MemPacketQueue& queue, Tick extra_col_delay, |
| MemInterface* mem_int) |
| { |
| // This method does the arbitration between requests. |
| |
| MemPacketQueue::iterator ret = queue.end(); |
| |
| if (!queue.empty()) { |
| if (queue.size() == 1) { |
| // available rank corresponds to state refresh idle |
| MemPacket* mem_pkt = *(queue.begin()); |
| if (packetReady(mem_pkt, mem_pkt->isDram()? dram : nvm)) { |
| ret = queue.begin(); |
| DPRINTF(MemCtrl, "Single request, going to a free rank\n"); |
| } else { |
| DPRINTF(MemCtrl, "Single request, going to a busy rank\n"); |
| } |
| } else if (memSchedPolicy == enums::fcfs) { |
| // check if there is a packet going to a free rank |
| for (auto i = queue.begin(); i != queue.end(); ++i) { |
| MemPacket* mem_pkt = *i; |
| if (packetReady(mem_pkt, mem_pkt->isDram()? dram : nvm)) { |
| ret = i; |
| break; |
| } |
| } |
| } else if (memSchedPolicy == enums::frfcfs) { |
| Tick col_allowed_at; |
| std::tie(ret, col_allowed_at) |
| = chooseNextFRFCFS(queue, extra_col_delay, mem_int); |
| } else { |
| panic("No scheduling policy chosen\n"); |
| } |
| } |
| return ret; |
| } |
| |
| std::pair<MemPacketQueue::iterator, Tick> |
| HeteroMemCtrl::chooseNextFRFCFS(MemPacketQueue& queue, Tick extra_col_delay, |
| MemInterface* mem_intr) |
| { |
| |
| auto selected_pkt_it = queue.end(); |
| auto nvm_pkt_it = queue.end(); |
| Tick col_allowed_at = MaxTick; |
| Tick nvm_col_allowed_at = MaxTick; |
| |
| std::tie(selected_pkt_it, col_allowed_at) = |
| MemCtrl::chooseNextFRFCFS(queue, extra_col_delay, dram); |
| |
| std::tie(nvm_pkt_it, nvm_col_allowed_at) = |
| MemCtrl::chooseNextFRFCFS(queue, extra_col_delay, nvm); |
| |
| |
| // Compare DRAM and NVM and select NVM if it can issue |
| // earlier than the DRAM packet |
| if (col_allowed_at > nvm_col_allowed_at) { |
| selected_pkt_it = nvm_pkt_it; |
| col_allowed_at = nvm_col_allowed_at; |
| } |
| |
| return std::make_pair(selected_pkt_it, col_allowed_at); |
| } |
| |
| |
| Tick |
| HeteroMemCtrl::doBurstAccess(MemPacket* mem_pkt, MemInterface* mem_intr) |
| { |
| // mem_intr will be dram by default in HeteroMemCtrl |
| |
| // When was command issued? |
| Tick cmd_at; |
| |
| if (mem_pkt->isDram()) { |
| cmd_at = MemCtrl::doBurstAccess(mem_pkt, mem_intr); |
| // Update timing for NVM ranks if NVM is configured on this channel |
| nvm->addRankToRankDelay(cmd_at); |
| // Since nextBurstAt and nextReqAt are part of the interface, making |
| // sure that they are same for both nvm and dram interfaces |
| nvm->nextBurstAt = dram->nextBurstAt; |
| nvm->nextReqTime = dram->nextReqTime; |
| |
| } else { |
| cmd_at = MemCtrl::doBurstAccess(mem_pkt, nvm); |
| // Update timing for NVM ranks if NVM is configured on this channel |
| dram->addRankToRankDelay(cmd_at); |
| dram->nextBurstAt = nvm->nextBurstAt; |
| dram->nextReqTime = nvm->nextReqTime; |
| } |
| |
| return cmd_at; |
| } |
| |
| bool |
| HeteroMemCtrl::memBusy(MemInterface* mem_intr) { |
| |
| // mem_intr in case of HeteroMemCtrl will always be dram |
| |
| // check ranks for refresh/wakeup - uses busStateNext, so done after |
| // turnaround decisions |
| // Default to busy status and update based on interface specifics |
| bool dram_busy, nvm_busy = true; |
| // DRAM |
| dram_busy = mem_intr->isBusy(false, false); |
| // NVM |
| bool read_queue_empty = totalReadQueueSize == 0; |
| bool all_writes_nvm = nvm->numWritesQueued == totalWriteQueueSize; |
| nvm_busy = nvm->isBusy(read_queue_empty, all_writes_nvm); |
| |
| // Default state of unused interface is 'true' |
| // Simply AND the busy signals to determine if system is busy |
| if (dram_busy && nvm_busy) { |
| // if all ranks are refreshing wait for them to finish |
| // and stall this state machine without taking any further |
| // action, and do not schedule a new nextReqEvent |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| void |
| HeteroMemCtrl::nonDetermReads(MemInterface* mem_intr) |
| { |
| // mem_intr by default points to dram in case |
| // of HeteroMemCtrl, therefore, calling nonDetermReads |
| // from MemCtrl using nvm interace |
| MemCtrl::nonDetermReads(nvm); |
| } |
| |
| bool |
| HeteroMemCtrl::nvmWriteBlock(MemInterface* mem_intr) |
| { |
| // mem_intr by default points to dram in case |
| // of HeteroMemCtrl, therefore, calling nvmWriteBlock |
| // from MemCtrl using nvm interface |
| return MemCtrl::nvmWriteBlock(nvm); |
| } |
| |
| Tick |
| HeteroMemCtrl::minReadToWriteDataGap() |
| { |
| return std::min(dram->minReadToWriteDataGap(), |
| nvm->minReadToWriteDataGap()); |
| } |
| |
| Tick |
| HeteroMemCtrl::minWriteToReadDataGap() |
| { |
| return std::min(dram->minWriteToReadDataGap(), |
| nvm->minWriteToReadDataGap()); |
| } |
| |
| Addr |
| HeteroMemCtrl::burstAlign(Addr addr, MemInterface* mem_intr) const |
| { |
| // mem_intr will point to dram interface in HeteroMemCtrl |
| if (mem_intr->getAddrRange().contains(addr)) { |
| return (addr & ~(Addr(mem_intr->bytesPerBurst() - 1))); |
| } else { |
| assert(nvm->getAddrRange().contains(addr)); |
| return (addr & ~(Addr(nvm->bytesPerBurst() - 1))); |
| } |
| } |
| |
| bool |
| HeteroMemCtrl::pktSizeCheck(MemPacket* mem_pkt, MemInterface* mem_intr) const |
| { |
| // mem_intr will point to dram interface in HeteroMemCtrl |
| if (mem_pkt->isDram()) { |
| return (mem_pkt->size <= mem_intr->bytesPerBurst()); |
| } else { |
| return (mem_pkt->size <= nvm->bytesPerBurst()); |
| } |
| } |
| |
| void |
| HeteroMemCtrl::recvFunctional(PacketPtr pkt) |
| { |
| bool found; |
| |
| found = MemCtrl::recvFunctionalLogic(pkt, dram); |
| |
| if (!found) { |
| found = MemCtrl::recvFunctionalLogic(pkt, nvm); |
| } |
| |
| if (!found) { |
| panic("Can't handle address range for packet %s\n", pkt->print()); |
| } |
| } |
| |
| bool |
| HeteroMemCtrl::allIntfDrained() const |
| { |
| // ensure dram is in power down and refresh IDLE states |
| bool dram_drained = dram->allRanksDrained(); |
| // No outstanding NVM writes |
| // All other queues verified as needed with calling logic |
| bool nvm_drained = nvm->allRanksDrained(); |
| return (dram_drained && nvm_drained); |
| } |
| |
| DrainState |
| HeteroMemCtrl::drain() |
| { |
| // if there is anything in any of our internal queues, keep track |
| // of that as well |
| if (!(!totalWriteQueueSize && !totalReadQueueSize && respQueue.empty() && |
| allIntfDrained())) { |
| |
| DPRINTF(Drain, "Memory controller not drained, write: %d, read: %d," |
| " resp: %d\n", totalWriteQueueSize, totalReadQueueSize, |
| respQueue.size()); |
| |
| // the only queue that is not drained automatically over time |
| // is the write queue, thus kick things into action if needed |
| if (!totalWriteQueueSize && !nextReqEvent.scheduled()) { |
| schedule(nextReqEvent, curTick()); |
| } |
| |
| dram->drainRanks(); |
| |
| return DrainState::Draining; |
| } else { |
| return DrainState::Drained; |
| } |
| } |
| |
| void |
| HeteroMemCtrl::drainResume() |
| { |
| if (!isTimingMode && system()->isTimingMode()) { |
| // if we switched to timing mode, kick things into action, |
| // and behave as if we restored from a checkpoint |
| startup(); |
| dram->startup(); |
| } else if (isTimingMode && !system()->isTimingMode()) { |
| // if we switch from timing mode, stop the refresh events to |
| // not cause issues with KVM |
| dram->suspend(); |
| } |
| |
| // update the mode |
| isTimingMode = system()->isTimingMode(); |
| } |
| |
| AddrRangeList |
| HeteroMemCtrl::getAddrRanges() |
| { |
| AddrRangeList ranges; |
| ranges.push_back(dram->getAddrRange()); |
| ranges.push_back(nvm->getAddrRange()); |
| return ranges; |
| } |
| |
| } // namespace memory |
| } // namespace gem5 |