| /* |
| * Copyright (c) 2015 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "sim/power/thermal_model.hh" |
| |
| #include "base/statistics.hh" |
| #include "params/ThermalCapacitor.hh" |
| #include "params/ThermalReference.hh" |
| #include "params/ThermalResistor.hh" |
| #include "sim/clocked_object.hh" |
| #include "sim/linear_solver.hh" |
| #include "sim/power/thermal_domain.hh" |
| #include "sim/sim_object.hh" |
| |
| /** |
| * ThermalReference |
| */ |
| ThermalReference::ThermalReference(const Params *p) |
| : SimObject(p), _temperature(p->temperature), node(NULL) |
| { |
| } |
| |
| ThermalReference * |
| ThermalReferenceParams::create() |
| { |
| return new ThermalReference(this); |
| } |
| |
| void |
| ThermalReference::serialize(CheckpointOut &cp) const |
| { |
| SERIALIZE_SCALAR(_temperature); |
| } |
| |
| void |
| ThermalReference::unserialize(CheckpointIn &cp) |
| { |
| UNSERIALIZE_SCALAR(_temperature); |
| } |
| |
| LinearEquation |
| ThermalReference::getEquation(ThermalNode * n, unsigned nnodes, |
| double step) const { |
| // Just return an empty equation |
| return LinearEquation(nnodes); |
| } |
| |
| /** |
| * ThermalResistor |
| */ |
| ThermalResistor::ThermalResistor(const Params *p) |
| : SimObject(p), _resistance(p->resistance), node1(NULL), node2(NULL) |
| { |
| } |
| |
| ThermalResistor * |
| ThermalResistorParams::create() |
| { |
| return new ThermalResistor(this); |
| } |
| |
| void |
| ThermalResistor::serialize(CheckpointOut &cp) const |
| { |
| SERIALIZE_SCALAR(_resistance); |
| } |
| |
| void |
| ThermalResistor::unserialize(CheckpointIn &cp) |
| { |
| UNSERIALIZE_SCALAR(_resistance); |
| } |
| |
| LinearEquation |
| ThermalResistor::getEquation(ThermalNode * n, unsigned nnodes, |
| double step) const |
| { |
| // i[n] = (Vn2 - Vn1)/R |
| LinearEquation eq(nnodes); |
| |
| if (n != node1 && n != node2) |
| return eq; |
| |
| if (node1->isref) |
| eq[eq.cnt()] += -node1->temp / _resistance; |
| else |
| eq[node1->id] += -1.0f / _resistance; |
| |
| if (node2->isref) |
| eq[eq.cnt()] += node2->temp / _resistance; |
| else |
| eq[node2->id] += 1.0f / _resistance; |
| |
| // We've assumed n was node1, reverse if necessary |
| if (n == node2) |
| eq *= -1.0f; |
| |
| return eq; |
| } |
| |
| /** |
| * ThermalCapacitor |
| */ |
| ThermalCapacitor::ThermalCapacitor(const Params *p) |
| : SimObject(p), _capacitance(p->capacitance), node1(NULL), node2(NULL) |
| { |
| } |
| |
| ThermalCapacitor * |
| ThermalCapacitorParams::create() |
| { |
| return new ThermalCapacitor(this); |
| } |
| |
| void |
| ThermalCapacitor::serialize(CheckpointOut &cp) const |
| { |
| SERIALIZE_SCALAR(_capacitance); |
| } |
| |
| void |
| ThermalCapacitor::unserialize(CheckpointIn &cp) |
| { |
| UNSERIALIZE_SCALAR(_capacitance); |
| } |
| |
| LinearEquation |
| ThermalCapacitor::getEquation(ThermalNode * n, unsigned nnodes, |
| double step) const |
| { |
| // i(t) = C * d(Vn2 - Vn1)/dt |
| // i[n] = C/step * (Vn2 - Vn1 - Vn2[n-1] + Vn1[n-1]) |
| LinearEquation eq(nnodes); |
| |
| if (n != node1 && n != node2) |
| return eq; |
| |
| eq[eq.cnt()] += _capacitance / step * (node1->temp - node2->temp); |
| |
| if (node1->isref) |
| eq[eq.cnt()] += _capacitance / step * (-node1->temp); |
| else |
| eq[node1->id] += -1.0f * _capacitance / step; |
| |
| if (node2->isref) |
| eq[eq.cnt()] += _capacitance / step * (node2->temp); |
| else |
| eq[node2->id] += 1.0f * _capacitance / step; |
| |
| // We've assumed n was node1, reverse if necessary |
| if (n == node2) |
| eq *= -1.0f; |
| |
| return eq; |
| } |
| |
| /** |
| * ThermalModel |
| */ |
| ThermalModel::ThermalModel(const Params *p) |
| : ClockedObject(p), stepEvent([this]{ doStep(); }, name()), _step(p->step) |
| { |
| } |
| |
| ThermalModel * |
| ThermalModelParams::create() |
| { |
| return new ThermalModel(this); |
| } |
| |
| void |
| ThermalModel::serialize(CheckpointOut &cp) const |
| { |
| SERIALIZE_SCALAR(_step); |
| } |
| |
| void |
| ThermalModel::unserialize(CheckpointIn &cp) |
| { |
| UNSERIALIZE_SCALAR(_step); |
| } |
| |
| void |
| ThermalModel::doStep() |
| { |
| // Calculate new temperatures! |
| // For each node in the system, create the kirchhoff nodal equation |
| LinearSystem ls(eq_nodes.size()); |
| for (unsigned i = 0; i < eq_nodes.size(); i++) { |
| auto n = eq_nodes[i]; |
| LinearEquation node_equation (eq_nodes.size()); |
| for (auto e : entities) { |
| LinearEquation eq = e->getEquation(n, eq_nodes.size(), _step); |
| node_equation = node_equation + eq; |
| } |
| ls[i] = node_equation; |
| } |
| |
| // Get temperatures for this iteration |
| std::vector <double> temps = ls.solve(); |
| for (unsigned i = 0; i < eq_nodes.size(); i++) |
| eq_nodes[i]->temp = temps[i]; |
| |
| // Schedule next computation |
| schedule(stepEvent, curTick() + SimClock::Int::s * _step); |
| |
| // Notify everybody |
| for (auto dom : domains) |
| dom->emitUpdate(); |
| } |
| |
| void |
| ThermalModel::startup() |
| { |
| // Look for nodes connected to voltage references, these |
| // can be just set to the reference value (no nodal equation) |
| for (auto ref : references) { |
| ref->node->temp = ref->_temperature; |
| ref->node->isref = true; |
| } |
| // Setup the initial temperatures |
| for (auto dom : domains) |
| dom->getNode()->temp = dom->initialTemperature(); |
| |
| // Create a list of unknown temperature nodes |
| for (auto n : nodes) { |
| bool found = false; |
| for (auto ref : references) |
| if (ref->node == n) { |
| found = true; |
| break; |
| } |
| if (!found) |
| eq_nodes.push_back(n); |
| } |
| |
| // Assign each node an ID |
| for (unsigned i = 0; i < eq_nodes.size(); i++) |
| eq_nodes[i]->id = i; |
| |
| // Schedule first thermal update |
| schedule(stepEvent, curTick() + SimClock::Int::s * _step); |
| } |
| |
| void ThermalModel::addDomain(ThermalDomain * d) { |
| domains.push_back(d); |
| entities.push_back(d); |
| } |
| void ThermalModel::addReference(ThermalReference * r) { |
| references.push_back(r); |
| entities.push_back(r); |
| } |
| void ThermalModel::addCapacitor(ThermalCapacitor * c) { |
| capacitors.push_back(c); |
| entities.push_back(c); |
| } |
| void ThermalModel::addResistor(ThermalResistor * r) { |
| resistors.push_back(r); |
| entities.push_back(r); |
| } |
| |
| double ThermalModel::getTemp() const { |
| // Just pick the highest temperature |
| double temp = 0; |
| for (auto & n : eq_nodes) |
| temp = std::max(temp, n->temp); |
| return temp; |
| } |