blob: 7d8bffd3d1be007da6ea5511b5a6dff7589a254e [file] [log] [blame]
# Copyright (c) 2014, 2016, 2018-2019 ARM Limited
# All rights reserved
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2003-2005 The Regents of The University of Michigan
# Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import with_statement, print_function
import os
import sys
import re
import inspect, traceback
# get type names
from types import *
from m5.util.grammar import Grammar
debug=False
###################
# Utility functions
#
# Indent every line in string 's' by two spaces
# (except preprocessor directives).
# Used to make nested code blocks look pretty.
#
def indent(s):
return re.sub(r'(?m)^(?!#)', ' ', s)
#
# Munge a somewhat arbitrarily formatted piece of Python code
# (e.g. from a format 'let' block) into something whose indentation
# will get by the Python parser.
#
# The two keys here are that Python will give a syntax error if
# there's any whitespace at the beginning of the first line, and that
# all lines at the same lexical nesting level must have identical
# indentation. Unfortunately the way code literals work, an entire
# let block tends to have some initial indentation. Rather than
# trying to figure out what that is and strip it off, we prepend 'if
# 1:' to make the let code the nested block inside the if (and have
# the parser automatically deal with the indentation for us).
#
# We don't want to do this if (1) the code block is empty or (2) the
# first line of the block doesn't have any whitespace at the front.
def fixPythonIndentation(s):
# get rid of blank lines first
s = re.sub(r'(?m)^\s*\n', '', s);
if (s != '' and re.match(r'[ \t]', s[0])):
s = 'if 1:\n' + s
return s
class ISAParserError(Exception):
"""Exception class for parser errors"""
def __init__(self, first, second=None):
if second is None:
self.lineno = 0
self.string = first
else:
self.lineno = first
self.string = second
def __str__(self):
return self.string
def error(*args):
raise ISAParserError(*args)
####################
# Template objects.
#
# Template objects are format strings that allow substitution from
# the attribute spaces of other objects (e.g. InstObjParams instances).
labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
class Template(object):
def __init__(self, parser, t):
self.parser = parser
self.template = t
def subst(self, d):
myDict = None
# Protect non-Python-dict substitutions (e.g. if there's a printf
# in the templated C++ code)
template = self.parser.protectNonSubstPercents(self.template)
# Build a dict ('myDict') to use for the template substitution.
# Start with the template namespace. Make a copy since we're
# going to modify it.
myDict = self.parser.templateMap.copy()
if isinstance(d, InstObjParams):
# If we're dealing with an InstObjParams object, we need
# to be a little more sophisticated. The instruction-wide
# parameters are already formed, but the parameters which
# are only function wide still need to be generated.
compositeCode = ''
myDict.update(d.__dict__)
# The "operands" and "snippets" attributes of the InstObjParams
# objects are for internal use and not substitution.
del myDict['operands']
del myDict['snippets']
snippetLabels = [l for l in labelRE.findall(template)
if l in d.snippets]
snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
for s in snippetLabels])
myDict.update(snippets)
compositeCode = ' '.join(list(map(str, snippets.values())))
# Add in template itself in case it references any
# operands explicitly (like Mem)
compositeCode += ' ' + template
operands = SubOperandList(self.parser, compositeCode, d.operands)
myDict['op_decl'] = operands.concatAttrStrings('op_decl')
if operands.readPC or operands.setPC:
myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
# In case there are predicated register reads and write, declare
# the variables for register indicies. It is being assumed that
# all the operands in the OperandList are also in the
# SubOperandList and in the same order. Otherwise, it is
# expected that predication would not be used for the operands.
if operands.predRead:
myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
if operands.predWrite:
myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
is_src = lambda op: op.is_src
is_dest = lambda op: op.is_dest
myDict['op_src_decl'] = \
operands.concatSomeAttrStrings(is_src, 'op_src_decl')
myDict['op_dest_decl'] = \
operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
if operands.readPC:
myDict['op_src_decl'] += \
'TheISA::PCState __parserAutoPCState;\n'
if operands.setPC:
myDict['op_dest_decl'] += \
'TheISA::PCState __parserAutoPCState;\n'
myDict['op_rd'] = operands.concatAttrStrings('op_rd')
if operands.readPC:
myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
myDict['op_rd']
# Compose the op_wb string. If we're going to write back the
# PC state because we changed some of its elements, we'll need to
# do that as early as possible. That allows later uncoordinated
# modifications to the PC to layer appropriately.
reordered = list(operands.items)
reordered.reverse()
op_wb_str = ''
pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
for op_desc in reordered:
if op_desc.isPCPart() and op_desc.is_dest:
op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
pcWbStr = ''
else:
op_wb_str = op_desc.op_wb + op_wb_str
myDict['op_wb'] = op_wb_str
elif isinstance(d, dict):
# if the argument is a dictionary, we just use it.
myDict.update(d)
elif hasattr(d, '__dict__'):
# if the argument is an object, we use its attribute map.
myDict.update(d.__dict__)
else:
raise TypeError("Template.subst() arg must be or have dictionary")
return template % myDict
# Convert to string.
def __str__(self):
return self.template
################
# Format object.
#
# A format object encapsulates an instruction format. It must provide
# a defineInst() method that generates the code for an instruction
# definition.
class Format(object):
def __init__(self, id, params, code):
self.id = id
self.params = params
label = 'def format ' + id
self.user_code = compile(fixPythonIndentation(code), label, 'exec')
param_list = ", ".join(params)
f = '''def defInst(_code, _context, %s):
my_locals = vars().copy()
exec(_code, _context, my_locals)
return my_locals\n''' % param_list
c = compile(f, label + ' wrapper', 'exec')
exec(c, globals())
self.func = defInst
def defineInst(self, parser, name, args, lineno):
parser.updateExportContext()
context = parser.exportContext.copy()
if len(name):
Name = name[0].upper()
if len(name) > 1:
Name += name[1:]
context.update({ 'name' : name, 'Name' : Name })
try:
vars = self.func(self.user_code, context, *args[0], **args[1])
except Exception as exc:
if debug:
raise
error(lineno, 'error defining "%s": %s.' % (name, exc))
for k in list(vars.keys()):
if k not in ('header_output', 'decoder_output',
'exec_output', 'decode_block'):
del vars[k]
return GenCode(parser, **vars)
# Special null format to catch an implicit-format instruction
# definition outside of any format block.
class NoFormat(object):
def __init__(self):
self.defaultInst = ''
def defineInst(self, parser, name, args, lineno):
error(lineno,
'instruction definition "%s" with no active format!' % name)
###############
# GenCode class
#
# The GenCode class encapsulates generated code destined for various
# output files. The header_output and decoder_output attributes are
# strings containing code destined for decoder.hh and decoder.cc
# respectively. The decode_block attribute contains code to be
# incorporated in the decode function itself (that will also end up in
# decoder.cc). The exec_output attribute is the string of code for the
# exec.cc file. The has_decode_default attribute is used in the decode block
# to allow explicit default clauses to override default default clauses.
class GenCode(object):
# Constructor.
def __init__(self, parser,
header_output = '', decoder_output = '', exec_output = '',
decode_block = '', has_decode_default = False):
self.parser = parser
self.header_output = header_output
self.decoder_output = decoder_output
self.exec_output = exec_output
self.decode_block = decode_block
self.has_decode_default = has_decode_default
# Write these code chunks out to the filesystem. They will be properly
# interwoven by the write_top_level_files().
def emit(self):
if self.header_output:
self.parser.get_file('header').write(self.header_output)
if self.decoder_output:
self.parser.get_file('decoder').write(self.decoder_output)
if self.exec_output:
self.parser.get_file('exec').write(self.exec_output)
if self.decode_block:
self.parser.get_file('decode_block').write(self.decode_block)
# Override '+' operator: generate a new GenCode object that
# concatenates all the individual strings in the operands.
def __add__(self, other):
return GenCode(self.parser,
self.header_output + other.header_output,
self.decoder_output + other.decoder_output,
self.exec_output + other.exec_output,
self.decode_block + other.decode_block,
self.has_decode_default or other.has_decode_default)
# Prepend a string (typically a comment) to all the strings.
def prepend_all(self, pre):
self.header_output = pre + self.header_output
self.decoder_output = pre + self.decoder_output
self.decode_block = pre + self.decode_block
self.exec_output = pre + self.exec_output
# Wrap the decode block in a pair of strings (e.g., 'case foo:'
# and 'break;'). Used to build the big nested switch statement.
def wrap_decode_block(self, pre, post = ''):
self.decode_block = pre + indent(self.decode_block) + post
#####################################################################
#
# Bitfield Operator Support
#
#####################################################################
bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
def substBitOps(code):
# first convert single-bit selectors to two-index form
# i.e., <n> --> <n:n>
code = bitOp1ArgRE.sub(r'<\1:\1>', code)
# simple case: selector applied to ID (name)
# i.e., foo<a:b> --> bits(foo, a, b)
code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
# if selector is applied to expression (ending in ')'),
# we need to search backward for matching '('
match = bitOpExprRE.search(code)
while match:
exprEnd = match.start()
here = exprEnd - 1
nestLevel = 1
while nestLevel > 0:
if code[here] == '(':
nestLevel -= 1
elif code[here] == ')':
nestLevel += 1
here -= 1
if here < 0:
sys.exit("Didn't find '('!")
exprStart = here+1
newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
match.group(1), match.group(2))
code = code[:exprStart] + newExpr + code[match.end():]
match = bitOpExprRE.search(code)
return code
#####################################################################
#
# Code Parser
#
# The remaining code is the support for automatically extracting
# instruction characteristics from pseudocode.
#
#####################################################################
# Force the argument to be a list. Useful for flags, where a caller
# can specify a singleton flag or a list of flags. Also usful for
# converting tuples to lists so they can be modified.
def makeList(arg):
if isinstance(arg, list):
return arg
elif isinstance(arg, tuple):
return list(arg)
elif not arg:
return []
else:
return [ arg ]
class Operand(object):
'''Base class for operand descriptors. An instance of this class
(or actually a class derived from this one) represents a specific
operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
derived classes encapsulates the traits of a particular operand
type (e.g., "32-bit integer register").'''
def buildReadCode(self, func = None):
subst_dict = {"name": self.base_name,
"func": func,
"reg_idx": self.reg_spec,
"ctype": self.ctype}
if hasattr(self, 'src_reg_idx'):
subst_dict['op_idx'] = self.src_reg_idx
code = self.read_code % subst_dict
return '%s = %s;\n' % (self.base_name, code)
def buildWriteCode(self, func = None):
subst_dict = {"name": self.base_name,
"func": func,
"reg_idx": self.reg_spec,
"ctype": self.ctype,
"final_val": self.base_name}
if hasattr(self, 'dest_reg_idx'):
subst_dict['op_idx'] = self.dest_reg_idx
code = self.write_code % subst_dict
return '''
{
%s final_val = %s;
%s;
if (traceData) { traceData->setData(final_val); }
}''' % (self.dflt_ctype, self.base_name, code)
def __init__(self, parser, full_name, ext, is_src, is_dest):
self.full_name = full_name
self.ext = ext
self.is_src = is_src
self.is_dest = is_dest
# The 'effective extension' (eff_ext) is either the actual
# extension, if one was explicitly provided, or the default.
if ext:
self.eff_ext = ext
elif hasattr(self, 'dflt_ext'):
self.eff_ext = self.dflt_ext
if hasattr(self, 'eff_ext'):
self.ctype = parser.operandTypeMap[self.eff_ext]
# Finalize additional fields (primarily code fields). This step
# is done separately since some of these fields may depend on the
# register index enumeration that hasn't been performed yet at the
# time of __init__(). The register index enumeration is affected
# by predicated register reads/writes. Hence, we forward the flags
# that indicate whether or not predication is in use.
def finalize(self, predRead, predWrite):
self.flags = self.getFlags()
self.constructor = self.makeConstructor(predRead, predWrite)
self.op_decl = self.makeDecl()
if self.is_src:
self.op_rd = self.makeRead(predRead)
self.op_src_decl = self.makeDecl()
else:
self.op_rd = ''
self.op_src_decl = ''
if self.is_dest:
self.op_wb = self.makeWrite(predWrite)
self.op_dest_decl = self.makeDecl()
else:
self.op_wb = ''
self.op_dest_decl = ''
def isMem(self):
return 0
def isReg(self):
return 0
def isFloatReg(self):
return 0
def isIntReg(self):
return 0
def isCCReg(self):
return 0
def isControlReg(self):
return 0
def isVecReg(self):
return 0
def isVecElem(self):
return 0
def isVecPredReg(self):
return 0
def isPCState(self):
return 0
def isPCPart(self):
return self.isPCState() and self.reg_spec
def hasReadPred(self):
return self.read_predicate != None
def hasWritePred(self):
return self.write_predicate != None
def getFlags(self):
# note the empty slice '[:]' gives us a copy of self.flags[0]
# instead of a reference to it
my_flags = self.flags[0][:]
if self.is_src:
my_flags += self.flags[1]
if self.is_dest:
my_flags += self.flags[2]
return my_flags
def makeDecl(self):
# Note that initializations in the declarations are solely
# to avoid 'uninitialized variable' errors from the compiler.
return self.ctype + ' ' + self.base_name + ' = 0;\n';
src_reg_constructor = '\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s);'
dst_reg_constructor = '\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s);'
class IntRegOperand(Operand):
reg_class = 'IntRegClass'
def isReg(self):
return 1
def isIntReg(self):
return 1
def makeConstructor(self, predRead, predWrite):
c_src = ''
c_dest = ''
if self.is_src:
c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
if self.hasReadPred():
c_src = '\n\tif (%s) {%s\n\t}' % \
(self.read_predicate, c_src)
if self.is_dest:
c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
c_dest += '\n\t_numIntDestRegs++;'
if self.hasWritePred():
c_dest = '\n\tif (%s) {%s\n\t}' % \
(self.write_predicate, c_dest)
return c_src + c_dest
def makeRead(self, predRead):
if (self.ctype == 'float' or self.ctype == 'double'):
error('Attempt to read integer register as FP')
if self.read_code != None:
return self.buildReadCode('readIntRegOperand')
int_reg_val = ''
if predRead:
int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
if self.hasReadPred():
int_reg_val = '(%s) ? %s : 0' % \
(self.read_predicate, int_reg_val)
else:
int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
return '%s = %s;\n' % (self.base_name, int_reg_val)
def makeWrite(self, predWrite):
if (self.ctype == 'float' or self.ctype == 'double'):
error('Attempt to write integer register as FP')
if self.write_code != None:
return self.buildWriteCode('setIntRegOperand')
if predWrite:
wp = 'true'
if self.hasWritePred():
wp = self.write_predicate
wcond = 'if (%s)' % (wp)
windex = '_destIndex++'
else:
wcond = ''
windex = '%d' % self.dest_reg_idx
wb = '''
%s
{
%s final_val = %s;
xc->setIntRegOperand(this, %s, final_val);\n
if (traceData) { traceData->setData(final_val); }
}''' % (wcond, self.ctype, self.base_name, windex)
return wb
class FloatRegOperand(Operand):
reg_class = 'FloatRegClass'
def isReg(self):
return 1
def isFloatReg(self):
return 1
def makeConstructor(self, predRead, predWrite):
c_src = ''
c_dest = ''
if self.is_src:
c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
if self.is_dest:
c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
c_dest += '\n\t_numFPDestRegs++;'
return c_src + c_dest
def makeRead(self, predRead):
if self.read_code != None:
return self.buildReadCode('readFloatRegOperandBits')
if predRead:
rindex = '_sourceIndex++'
else:
rindex = '%d' % self.src_reg_idx
code = 'xc->readFloatRegOperandBits(this, %s)' % rindex
if self.ctype == 'float':
code = 'bitsToFloat32(%s)' % code
elif self.ctype == 'double':
code = 'bitsToFloat64(%s)' % code
return '%s = %s;\n' % (self.base_name, code)
def makeWrite(self, predWrite):
if self.write_code != None:
return self.buildWriteCode('setFloatRegOperandBits')
if predWrite:
wp = '_destIndex++'
else:
wp = '%d' % self.dest_reg_idx
val = 'final_val'
if self.ctype == 'float':
val = 'floatToBits32(%s)' % val
elif self.ctype == 'double':
val = 'floatToBits64(%s)' % val
wp = 'xc->setFloatRegOperandBits(this, %s, %s);' % (wp, val)
wb = '''
{
%s final_val = %s;
%s\n
if (traceData) { traceData->setData(final_val); }
}''' % (self.ctype, self.base_name, wp)
return wb
class VecRegOperand(Operand):
reg_class = 'VecRegClass'
def __init__(self, parser, full_name, ext, is_src, is_dest):
Operand.__init__(self, parser, full_name, ext, is_src, is_dest)
self.elemExt = None
self.parser = parser
def isReg(self):
return 1
def isVecReg(self):
return 1
def makeDeclElem(self, elem_op):
(elem_name, elem_ext) = elem_op
(elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
if elem_ext:
ext = elem_ext
else:
ext = dflt_elem_ext
ctype = self.parser.operandTypeMap[ext]
return '\n\t%s %s = 0;' % (ctype, elem_name)
def makeDecl(self):
if not self.is_dest and self.is_src:
c_decl = '\t/* Vars for %s*/' % (self.base_name)
if hasattr(self, 'active_elems'):
if self.active_elems:
for elem in self.active_elems:
c_decl += self.makeDeclElem(elem)
return c_decl + '\t/* End vars for %s */\n' % (self.base_name)
else:
return ''
def makeConstructor(self, predRead, predWrite):
c_src = ''
c_dest = ''
numAccessNeeded = 1
if self.is_src:
c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
if self.is_dest:
c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
c_dest += '\n\t_numVecDestRegs++;'
return c_src + c_dest
# Read destination register to write
def makeReadWElem(self, elem_op):
(elem_name, elem_ext) = elem_op
(elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
if elem_ext:
ext = elem_ext
else:
ext = dflt_elem_ext
ctype = self.parser.operandTypeMap[ext]
c_read = '\t\t%s& %s = %s[%s];\n' % \
(ctype, elem_name, self.base_name, elem_spec)
return c_read
def makeReadW(self, predWrite):
func = 'getWritableVecRegOperand'
if self.read_code != None:
return self.buildReadCode(func)
if predWrite:
rindex = '_destIndex++'
else:
rindex = '%d' % self.dest_reg_idx
c_readw = '\t\t%s& tmp_d%s = xc->%s(this, %s);\n'\
% ('TheISA::VecRegContainer', rindex, func, rindex)
if self.elemExt:
c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (self.base_name,
rindex, self.parser.operandTypeMap[self.elemExt])
if self.ext:
c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (self.base_name,
rindex, self.parser.operandTypeMap[self.ext])
if hasattr(self, 'active_elems'):
if self.active_elems:
for elem in self.active_elems:
c_readw += self.makeReadWElem(elem)
return c_readw
# Normal source operand read
def makeReadElem(self, elem_op, name):
(elem_name, elem_ext) = elem_op
(elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
if elem_ext:
ext = elem_ext
else:
ext = dflt_elem_ext
ctype = self.parser.operandTypeMap[ext]
c_read = '\t\t%s = %s[%s];\n' % \
(elem_name, name, elem_spec)
return c_read
def makeRead(self, predRead):
func = 'readVecRegOperand'
if self.read_code != None:
return self.buildReadCode(func)
if predRead:
rindex = '_sourceIndex++'
else:
rindex = '%d' % self.src_reg_idx
name = self.base_name
if self.is_dest and self.is_src:
name += '_merger'
c_read = '\t\t%s& tmp_s%s = xc->%s(this, %s);\n' \
% ('const TheISA::VecRegContainer', rindex, func, rindex)
# If the parser has detected that elements are being access, create
# the appropriate view
if self.elemExt:
c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % \
(name, rindex, self.parser.operandTypeMap[self.elemExt])
if self.ext:
c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % \
(name, rindex, self.parser.operandTypeMap[self.ext])
if hasattr(self, 'active_elems'):
if self.active_elems:
for elem in self.active_elems:
c_read += self.makeReadElem(elem, name)
return c_read
def makeWrite(self, predWrite):
func = 'setVecRegOperand'
if self.write_code != None:
return self.buildWriteCode(func)
wb = '''
if (traceData) {
traceData->setData(tmp_d%d);
}
''' % self.dest_reg_idx
return wb
def finalize(self, predRead, predWrite):
super(VecRegOperand, self).finalize(predRead, predWrite)
if self.is_dest:
self.op_rd = self.makeReadW(predWrite) + self.op_rd
class VecElemOperand(Operand):
reg_class = 'VecElemClass'
def isReg(self):
return 1
def isVecElem(self):
return 1
def makeDecl(self):
if self.is_dest and not self.is_src:
return '\n\t%s %s;' % (self.ctype, self.base_name)
else:
return ''
def makeConstructor(self, predRead, predWrite):
c_src = ''
c_dest = ''
numAccessNeeded = 1
if self.is_src:
c_src = ('\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s, %s);' %
(self.reg_class, self.reg_spec, self.elem_spec))
if self.is_dest:
c_dest = ('\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s, %s);' %
(self.reg_class, self.reg_spec, self.elem_spec))
c_dest += '\n\t_numVecElemDestRegs++;'
return c_src + c_dest
def makeRead(self, predRead):
c_read = 'xc->readVecElemOperand(this, %d)' % self.src_reg_idx
if self.ctype == 'float':
c_read = 'bitsToFloat32(%s)' % c_read
elif self.ctype == 'double':
c_read = 'bitsToFloat64(%s)' % c_read
return '\n\t%s %s = %s;\n' % (self.ctype, self.base_name, c_read)
def makeWrite(self, predWrite):
if self.ctype == 'float':
c_write = 'floatToBits32(%s)' % self.base_name
elif self.ctype == 'double':
c_write = 'floatToBits64(%s)' % self.base_name
else:
c_write = self.base_name
c_write = ('\n\txc->setVecElemOperand(this, %d, %s);' %
(self.dest_reg_idx, c_write))
return c_write
class VecPredRegOperand(Operand):
reg_class = 'VecPredRegClass'
def __init__(self, parser, full_name, ext, is_src, is_dest):
Operand.__init__(self, parser, full_name, ext, is_src, is_dest)
self.parser = parser
def isReg(self):
return 1
def isVecPredReg(self):
return 1
def makeDecl(self):
return ''
def makeConstructor(self, predRead, predWrite):
c_src = ''
c_dest = ''
if self.is_src:
c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
if self.is_dest:
c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
c_dest += '\n\t_numVecPredDestRegs++;'
return c_src + c_dest
def makeRead(self, predRead):
func = 'readVecPredRegOperand'
if self.read_code != None:
return self.buildReadCode(func)
if predRead:
rindex = '_sourceIndex++'
else:
rindex = '%d' % self.src_reg_idx
c_read = '\t\t%s& tmp_s%s = xc->%s(this, %s);\n' % (
'const TheISA::VecPredRegContainer', rindex, func, rindex)
if self.ext:
c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % (
self.base_name, rindex,
self.parser.operandTypeMap[self.ext])
return c_read
def makeReadW(self, predWrite):
func = 'getWritableVecPredRegOperand'
if self.read_code != None:
return self.buildReadCode(func)
if predWrite:
rindex = '_destIndex++'
else:
rindex = '%d' % self.dest_reg_idx
c_readw = '\t\t%s& tmp_d%s = xc->%s(this, %s);\n' % (
'TheISA::VecPredRegContainer', rindex, func, rindex)
if self.ext:
c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (
self.base_name, rindex,
self.parser.operandTypeMap[self.ext])
return c_readw
def makeWrite(self, predWrite):
func = 'setVecPredRegOperand'
if self.write_code != None:
return self.buildWriteCode(func)
wb = '''
if (traceData) {
traceData->setData(tmp_d%d);
}
''' % self.dest_reg_idx
return wb
def finalize(self, predRead, predWrite):
super(VecPredRegOperand, self).finalize(predRead, predWrite)
if self.is_dest:
self.op_rd = self.makeReadW(predWrite) + self.op_rd
class CCRegOperand(Operand):
reg_class = 'CCRegClass'
def isReg(self):
return 1
def isCCReg(self):
return 1
def makeConstructor(self, predRead, predWrite):
c_src = ''
c_dest = ''
if self.is_src:
c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
if self.hasReadPred():
c_src = '\n\tif (%s) {%s\n\t}' % \
(self.read_predicate, c_src)
if self.is_dest:
c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
c_dest += '\n\t_numCCDestRegs++;'
if self.hasWritePred():
c_dest = '\n\tif (%s) {%s\n\t}' % \
(self.write_predicate, c_dest)
return c_src + c_dest
def makeRead(self, predRead):
if (self.ctype == 'float' or self.ctype == 'double'):
error('Attempt to read condition-code register as FP')
if self.read_code != None:
return self.buildReadCode('readCCRegOperand')
int_reg_val = ''
if predRead:
int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
if self.hasReadPred():
int_reg_val = '(%s) ? %s : 0' % \
(self.read_predicate, int_reg_val)
else:
int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
return '%s = %s;\n' % (self.base_name, int_reg_val)
def makeWrite(self, predWrite):
if (self.ctype == 'float' or self.ctype == 'double'):
error('Attempt to write condition-code register as FP')
if self.write_code != None:
return self.buildWriteCode('setCCRegOperand')
if predWrite:
wp = 'true'
if self.hasWritePred():
wp = self.write_predicate
wcond = 'if (%s)' % (wp)
windex = '_destIndex++'
else:
wcond = ''
windex = '%d' % self.dest_reg_idx
wb = '''
%s
{
%s final_val = %s;
xc->setCCRegOperand(this, %s, final_val);\n
if (traceData) { traceData->setData(final_val); }
}''' % (wcond, self.ctype, self.base_name, windex)
return wb
class ControlRegOperand(Operand):
reg_class = 'MiscRegClass'
def isReg(self):
return 1
def isControlReg(self):
return 1
def makeConstructor(self, predRead, predWrite):
c_src = ''
c_dest = ''
if self.is_src:
c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
if self.is_dest:
c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
return c_src + c_dest
def makeRead(self, predRead):
bit_select = 0
if (self.ctype == 'float' or self.ctype == 'double'):
error('Attempt to read control register as FP')
if self.read_code != None:
return self.buildReadCode('readMiscRegOperand')
if predRead:
rindex = '_sourceIndex++'
else:
rindex = '%d' % self.src_reg_idx
return '%s = xc->readMiscRegOperand(this, %s);\n' % \
(self.base_name, rindex)
def makeWrite(self, predWrite):
if (self.ctype == 'float' or self.ctype == 'double'):
error('Attempt to write control register as FP')
if self.write_code != None:
return self.buildWriteCode('setMiscRegOperand')
if predWrite:
windex = '_destIndex++'
else:
windex = '%d' % self.dest_reg_idx
wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
(windex, self.base_name)
wb += 'if (traceData) { traceData->setData(%s); }' % \
self.base_name
return wb
class MemOperand(Operand):
def isMem(self):
return 1
def makeConstructor(self, predRead, predWrite):
return ''
def makeDecl(self):
# Declare memory data variable.
return '%s %s;\n' % (self.ctype, self.base_name)
def makeRead(self, predRead):
if self.read_code != None:
return self.buildReadCode()
return ''
def makeWrite(self, predWrite):
if self.write_code != None:
return self.buildWriteCode()
return ''
class PCStateOperand(Operand):
def makeConstructor(self, predRead, predWrite):
return ''
def makeRead(self, predRead):
if self.reg_spec:
# A component of the PC state.
return '%s = __parserAutoPCState.%s();\n' % \
(self.base_name, self.reg_spec)
else:
# The whole PC state itself.
return '%s = xc->pcState();\n' % self.base_name
def makeWrite(self, predWrite):
if self.reg_spec:
# A component of the PC state.
return '__parserAutoPCState.%s(%s);\n' % \
(self.reg_spec, self.base_name)
else:
# The whole PC state itself.
return 'xc->pcState(%s);\n' % self.base_name
def makeDecl(self):
ctype = 'TheISA::PCState'
if self.isPCPart():
ctype = self.ctype
# Note that initializations in the declarations are solely
# to avoid 'uninitialized variable' errors from the compiler.
return '%s %s = 0;\n' % (ctype, self.base_name)
def isPCState(self):
return 1
class OperandList(object):
'''Find all the operands in the given code block. Returns an operand
descriptor list (instance of class OperandList).'''
def __init__(self, parser, code):
self.items = []
self.bases = {}
# delete strings and comments so we don't match on operands inside
for regEx in (stringRE, commentRE):
code = regEx.sub('', code)
# search for operands
next_pos = 0
while 1:
match = parser.operandsRE.search(code, next_pos)
if not match:
# no more matches: we're done
break
op = match.groups()
# regexp groups are operand full name, base, and extension
(op_full, op_base, op_ext) = op
# If is a elem operand, define or update the corresponding
# vector operand
isElem = False
if op_base in parser.elemToVector:
isElem = True
elem_op = (op_base, op_ext)
op_base = parser.elemToVector[op_base]
op_ext = '' # use the default one
# if the token following the operand is an assignment, this is
# a destination (LHS), else it's a source (RHS)
is_dest = (assignRE.match(code, match.end()) != None)
is_src = not is_dest
# see if we've already seen this one
op_desc = self.find_base(op_base)
if op_desc:
if op_ext and op_ext != '' and op_desc.ext != op_ext:
error ('Inconsistent extensions for operand %s: %s - %s' \
% (op_base, op_desc.ext, op_ext))
op_desc.is_src = op_desc.is_src or is_src
op_desc.is_dest = op_desc.is_dest or is_dest
if isElem:
(elem_base, elem_ext) = elem_op
found = False
for ae in op_desc.active_elems:
(ae_base, ae_ext) = ae
if ae_base == elem_base:
if ae_ext != elem_ext:
error('Inconsistent extensions for elem'
' operand %s' % elem_base)
else:
found = True
if not found:
op_desc.active_elems.append(elem_op)
else:
# new operand: create new descriptor
op_desc = parser.operandNameMap[op_base](parser,
op_full, op_ext, is_src, is_dest)
# if operand is a vector elem, add the corresponding vector
# operand if not already done
if isElem:
op_desc.elemExt = elem_op[1]
op_desc.active_elems = [elem_op]
self.append(op_desc)
# start next search after end of current match
next_pos = match.end()
self.sort()
# enumerate source & dest register operands... used in building
# constructor later
self.numSrcRegs = 0
self.numDestRegs = 0
self.numFPDestRegs = 0
self.numIntDestRegs = 0
self.numVecDestRegs = 0
self.numVecPredDestRegs = 0
self.numCCDestRegs = 0
self.numMiscDestRegs = 0
self.memOperand = None
# Flags to keep track if one or more operands are to be read/written
# conditionally.
self.predRead = False
self.predWrite = False
for op_desc in self.items:
if op_desc.isReg():
if op_desc.is_src:
op_desc.src_reg_idx = self.numSrcRegs
self.numSrcRegs += 1
if op_desc.is_dest:
op_desc.dest_reg_idx = self.numDestRegs
self.numDestRegs += 1
if op_desc.isFloatReg():
self.numFPDestRegs += 1
elif op_desc.isIntReg():
self.numIntDestRegs += 1
elif op_desc.isVecReg():
self.numVecDestRegs += 1
elif op_desc.isVecPredReg():
self.numVecPredDestRegs += 1
elif op_desc.isCCReg():
self.numCCDestRegs += 1
elif op_desc.isControlReg():
self.numMiscDestRegs += 1
elif op_desc.isMem():
if self.memOperand:
error("Code block has more than one memory operand.")
self.memOperand = op_desc
# Check if this operand has read/write predication. If true, then
# the microop will dynamically index source/dest registers.
self.predRead = self.predRead or op_desc.hasReadPred()
self.predWrite = self.predWrite or op_desc.hasWritePred()
if parser.maxInstSrcRegs < self.numSrcRegs:
parser.maxInstSrcRegs = self.numSrcRegs
if parser.maxInstDestRegs < self.numDestRegs:
parser.maxInstDestRegs = self.numDestRegs
if parser.maxMiscDestRegs < self.numMiscDestRegs:
parser.maxMiscDestRegs = self.numMiscDestRegs
# now make a final pass to finalize op_desc fields that may depend
# on the register enumeration
for op_desc in self.items:
op_desc.finalize(self.predRead, self.predWrite)
def __len__(self):
return len(self.items)
def __getitem__(self, index):
return self.items[index]
def append(self, op_desc):
self.items.append(op_desc)
self.bases[op_desc.base_name] = op_desc
def find_base(self, base_name):
# like self.bases[base_name], but returns None if not found
# (rather than raising exception)
return self.bases.get(base_name)
# internal helper function for concat[Some]Attr{Strings|Lists}
def __internalConcatAttrs(self, attr_name, filter, result):
for op_desc in self.items:
if filter(op_desc):
result += getattr(op_desc, attr_name)
return result
# return a single string that is the concatenation of the (string)
# values of the specified attribute for all operands
def concatAttrStrings(self, attr_name):
return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
# like concatAttrStrings, but only include the values for the operands
# for which the provided filter function returns true
def concatSomeAttrStrings(self, filter, attr_name):
return self.__internalConcatAttrs(attr_name, filter, '')
# return a single list that is the concatenation of the (list)
# values of the specified attribute for all operands
def concatAttrLists(self, attr_name):
return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
# like concatAttrLists, but only include the values for the operands
# for which the provided filter function returns true
def concatSomeAttrLists(self, filter, attr_name):
return self.__internalConcatAttrs(attr_name, filter, [])
def sort(self):
self.items.sort(key=lambda a: a.sort_pri)
class SubOperandList(OperandList):
'''Find all the operands in the given code block. Returns an operand
descriptor list (instance of class OperandList).'''
def __init__(self, parser, code, requestor_list):
self.items = []
self.bases = {}
# delete strings and comments so we don't match on operands inside
for regEx in (stringRE, commentRE):
code = regEx.sub('', code)
# search for operands
next_pos = 0
while 1:
match = parser.operandsRE.search(code, next_pos)
if not match:
# no more matches: we're done
break
op = match.groups()
# regexp groups are operand full name, base, and extension
(op_full, op_base, op_ext) = op
# If is a elem operand, define or update the corresponding
# vector operand
if op_base in parser.elemToVector:
elem_op = op_base
op_base = parser.elemToVector[elem_op]
# find this op in the requestor list
op_desc = requestor_list.find_base(op_base)
if not op_desc:
error('Found operand %s which is not in the requestor list!'
% op_base)
else:
# See if we've already found this operand
op_desc = self.find_base(op_base)
if not op_desc:
# if not, add a reference to it to this sub list
self.append(requestor_list.bases[op_base])
# start next search after end of current match
next_pos = match.end()
self.sort()
self.memOperand = None
# Whether the whole PC needs to be read so parts of it can be accessed
self.readPC = False
# Whether the whole PC needs to be written after parts of it were
# changed
self.setPC = False
# Whether this instruction manipulates the whole PC or parts of it.
# Mixing the two is a bad idea and flagged as an error.
self.pcPart = None
# Flags to keep track if one or more operands are to be read/written
# conditionally.
self.predRead = False
self.predWrite = False
for op_desc in self.items:
if op_desc.isPCPart():
self.readPC = True
if op_desc.is_dest:
self.setPC = True
if op_desc.isPCState():
if self.pcPart is not None:
if self.pcPart and not op_desc.isPCPart() or \
not self.pcPart and op_desc.isPCPart():
error("Mixed whole and partial PC state operands.")
self.pcPart = op_desc.isPCPart()
if op_desc.isMem():
if self.memOperand:
error("Code block has more than one memory operand.")
self.memOperand = op_desc
# Check if this operand has read/write predication. If true, then
# the microop will dynamically index source/dest registers.
self.predRead = self.predRead or op_desc.hasReadPred()
self.predWrite = self.predWrite or op_desc.hasWritePred()
# Regular expression object to match C++ strings
stringRE = re.compile(r'"([^"\\]|\\.)*"')
# Regular expression object to match C++ comments
# (used in findOperands())
commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
re.DOTALL | re.MULTILINE)
# Regular expression object to match assignment statements (used in
# findOperands()). If the code immediately following the first
# appearance of the operand matches this regex, then the operand
# appears to be on the LHS of an assignment, and is thus a
# destination. basically we're looking for an '=' that's not '=='.
# The heinous tangle before that handles the case where the operand
# has an array subscript.
assignRE = re.compile(r'(\[[^\]]+\])?\s*=(?!=)', re.MULTILINE)
def makeFlagConstructor(flag_list):
if len(flag_list) == 0:
return ''
# filter out repeated flags
flag_list.sort()
i = 1
while i < len(flag_list):
if flag_list[i] == flag_list[i-1]:
del flag_list[i]
else:
i += 1
pre = '\n\tflags['
post = '] = true;'
code = pre + (post + pre).join(flag_list) + post
return code
# Assume all instruction flags are of the form 'IsFoo'
instFlagRE = re.compile(r'Is.*')
# OpClass constants end in 'Op' except No_OpClass
opClassRE = re.compile(r'.*Op|No_OpClass')
class InstObjParams(object):
def __init__(self, parser, mnem, class_name, base_class = '',
snippets = {}, opt_args = []):
self.mnemonic = mnem
self.class_name = class_name
self.base_class = base_class
if not isinstance(snippets, dict):
snippets = {'code' : snippets}
compositeCode = ' '.join(list(map(str, snippets.values())))
self.snippets = snippets
self.operands = OperandList(parser, compositeCode)
# The header of the constructor declares the variables to be used
# in the body of the constructor.
header = ''
header += '\n\t_numSrcRegs = 0;'
header += '\n\t_numDestRegs = 0;'
header += '\n\t_numFPDestRegs = 0;'
header += '\n\t_numVecDestRegs = 0;'
header += '\n\t_numVecElemDestRegs = 0;'
header += '\n\t_numVecPredDestRegs = 0;'
header += '\n\t_numIntDestRegs = 0;'
header += '\n\t_numCCDestRegs = 0;'
self.constructor = header + \
self.operands.concatAttrStrings('constructor')
self.flags = self.operands.concatAttrLists('flags')
self.op_class = None
# Optional arguments are assumed to be either StaticInst flags
# or an OpClass value. To avoid having to import a complete
# list of these values to match against, we do it ad-hoc
# with regexps.
for oa in opt_args:
if instFlagRE.match(oa):
self.flags.append(oa)
elif opClassRE.match(oa):
self.op_class = oa
else:
error('InstObjParams: optional arg "%s" not recognized '
'as StaticInst::Flag or OpClass.' % oa)
# Make a basic guess on the operand class if not set.
# These are good enough for most cases.
if not self.op_class:
if 'IsStore' in self.flags:
# The order matters here: 'IsFloating' and 'IsInteger' are
# usually set in FP instructions because of the base
# register
if 'IsFloating' in self.flags:
self.op_class = 'FloatMemWriteOp'
else:
self.op_class = 'MemWriteOp'
elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
# The order matters here: 'IsFloating' and 'IsInteger' are
# usually set in FP instructions because of the base
# register
if 'IsFloating' in self.flags:
self.op_class = 'FloatMemReadOp'
else:
self.op_class = 'MemReadOp'
elif 'IsFloating' in self.flags:
self.op_class = 'FloatAddOp'
elif 'IsVector' in self.flags:
self.op_class = 'SimdAddOp'
else:
self.op_class = 'IntAluOp'
# add flag initialization to contructor here to include
# any flags added via opt_args
self.constructor += makeFlagConstructor(self.flags)
# if 'IsFloating' is set, add call to the FP enable check
# function (which should be provided by isa_desc via a declare)
# if 'IsVector' is set, add call to the Vector enable check
# function (which should be provided by isa_desc via a declare)
if 'IsFloating' in self.flags:
self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
elif 'IsVector' in self.flags:
self.fp_enable_check = 'fault = checkVecEnableFault(xc);'
else:
self.fp_enable_check = ''
##############
# Stack: a simple stack object. Used for both formats (formatStack)
# and default cases (defaultStack). Simply wraps a list to give more
# stack-like syntax and enable initialization with an argument list
# (as opposed to an argument that's a list).
class Stack(list):
def __init__(self, *items):
list.__init__(self, items)
def push(self, item):
self.append(item);
def top(self):
return self[-1]
# Format a file include stack backtrace as a string
def backtrace(filename_stack):
fmt = "In file included from %s:"
return "\n".join([fmt % f for f in filename_stack])
#######################
#
# LineTracker: track filenames along with line numbers in PLY lineno fields
# PLY explicitly doesn't do anything with 'lineno' except propagate
# it. This class lets us tie filenames with the line numbers with a
# minimum of disruption to existing increment code.
#
class LineTracker(object):
def __init__(self, filename, lineno=1):
self.filename = filename
self.lineno = lineno
# Overload '+=' for increments. We need to create a new object on
# each update else every token ends up referencing the same
# constantly incrementing instance.
def __iadd__(self, incr):
return LineTracker(self.filename, self.lineno + incr)
def __str__(self):
return "%s:%d" % (self.filename, self.lineno)
# In case there are places where someone really expects a number
def __int__(self):
return self.lineno
#######################
#
# ISA Parser
# parses ISA DSL and emits C++ headers and source
#
class ISAParser(Grammar):
def __init__(self, output_dir):
super(ISAParser, self).__init__()
self.output_dir = output_dir
self.filename = None # for output file watermarking/scaremongering
# variable to hold templates
self.templateMap = {}
# This dictionary maps format name strings to Format objects.
self.formatMap = {}
# Track open files and, if applicable, how many chunks it has been
# split into so far.
self.files = {}
self.splits = {}
# isa_name / namespace identifier from namespace declaration.
# before the namespace declaration, None.
self.isa_name = None
self.namespace = None
# The format stack.
self.formatStack = Stack(NoFormat())
# The default case stack.
self.defaultStack = Stack(None)
# Stack that tracks current file and line number. Each
# element is a tuple (filename, lineno) that records the
# *current* filename and the line number in the *previous*
# file where it was included.
self.fileNameStack = Stack()
symbols = ('makeList', 're')
self.exportContext = dict([(s, eval(s)) for s in symbols])
self.maxInstSrcRegs = 0
self.maxInstDestRegs = 0
self.maxMiscDestRegs = 0
def __getitem__(self, i): # Allow object (self) to be
return getattr(self, i) # passed to %-substitutions
# Change the file suffix of a base filename:
# (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
def suffixize(self, s, sec):
extn = re.compile('(\.[^\.]+)$') # isolate extension
if self.namespace:
return extn.sub(r'-ns\1.inc', s) # insert some text on either side
else:
return extn.sub(r'-g\1.inc', s)
# Get the file object for emitting code into the specified section
# (header, decoder, exec, decode_block).
def get_file(self, section):
if section == 'decode_block':
filename = 'decode-method.cc.inc'
else:
if section == 'header':
file = 'decoder.hh'
else:
file = '%s.cc' % section
filename = self.suffixize(file, section)
try:
return self.files[filename]
except KeyError: pass
f = self.open(filename)
self.files[filename] = f
# The splittable files are the ones with many independent
# per-instruction functions - the decoder's instruction constructors
# and the instruction execution (execute()) methods. These both have
# the suffix -ns.cc.inc, meaning they are within the namespace part
# of the ISA, contain object-emitting C++ source, and are included
# into other top-level files. These are the files that need special
# #define's to allow parts of them to be compiled separately. Rather
# than splitting the emissions into separate files, the monolithic
# output of the ISA parser is maintained, but the value (or lack
# thereof) of the __SPLIT definition during C preprocessing will
# select the different chunks. If no 'split' directives are used,
# the cpp emissions have no effect.
if re.search('-ns.cc.inc$', filename):
print('#if !defined(__SPLIT) || (__SPLIT == 1)', file=f)
self.splits[f] = 1
# ensure requisite #include's
elif filename == 'decoder-g.hh.inc':
print('#include "base/bitfield.hh"', file=f)
return f
# Weave together the parts of the different output sections by
# #include'ing them into some very short top-level .cc/.hh files.
# These small files make it much clearer how this tool works, since
# you directly see the chunks emitted as files that are #include'd.
def write_top_level_files(self):
# decoder header - everything depends on this
file = 'decoder.hh'
with self.open(file) as f:
f.write('#ifndef __ARCH_%(isa)s_GENERATED_DECODER_HH__\n'
'#define __ARCH_%(isa)s_GENERATED_DECODER_HH__\n\n' %
{'isa': self.isa_name.upper()})
fn = 'decoder-g.hh.inc'
assert(fn in self.files)
f.write('#include "%s"\n' % fn)
fn = 'decoder-ns.hh.inc'
assert(fn in self.files)
f.write('namespace %s {\n#include "%s"\n}\n'
% (self.namespace, fn))
f.write('\n#endif // __ARCH_%s_GENERATED_DECODER_HH__\n' %
self.isa_name.upper())
# decoder method - cannot be split
file = 'decoder.cc'
with self.open(file) as f:
fn = 'base/compiler.hh'
f.write('#include "%s"\n' % fn)
fn = 'decoder-g.cc.inc'
assert(fn in self.files)
f.write('#include "%s"\n' % fn)
fn = 'decoder.hh'
f.write('#include "%s"\n' % fn)
fn = 'decode-method.cc.inc'
# is guaranteed to have been written for parse to complete
f.write('#include "%s"\n' % fn)
extn = re.compile('(\.[^\.]+)$')
# instruction constructors
splits = self.splits[self.get_file('decoder')]
file_ = 'inst-constrs.cc'
for i in range(1, splits+1):
if splits > 1:
file = extn.sub(r'-%d\1' % i, file_)
else:
file = file_
with self.open(file) as f:
fn = 'decoder-g.cc.inc'
assert(fn in self.files)
f.write('#include "%s"\n' % fn)
fn = 'decoder.hh'
f.write('#include "%s"\n' % fn)
fn = 'decoder-ns.cc.inc'
assert(fn in self.files)
print('namespace %s {' % self.namespace, file=f)
if splits > 1:
print('#define __SPLIT %u' % i, file=f)
print('#include "%s"' % fn, file=f)
print('}', file=f)
# instruction execution
splits = self.splits[self.get_file('exec')]
for i in range(1, splits+1):
file = 'generic_cpu_exec.cc'
if splits > 1:
file = extn.sub(r'_%d\1' % i, file)
with self.open(file) as f:
fn = 'exec-g.cc.inc'
assert(fn in self.files)
f.write('#include "%s"\n' % fn)
f.write('#include "cpu/exec_context.hh"\n')
f.write('#include "decoder.hh"\n')
fn = 'exec-ns.cc.inc'
assert(fn in self.files)
print('namespace %s {' % self.namespace, file=f)
if splits > 1:
print('#define __SPLIT %u' % i, file=f)
print('#include "%s"' % fn, file=f)
print('}', file=f)
# max_inst_regs.hh
self.update('max_inst_regs.hh',
'''namespace %(namespace)s {
const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
const int MaxInstDestRegs = %(maxInstDestRegs)d;
const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
scaremonger_template ='''// DO NOT EDIT
// This file was automatically generated from an ISA description:
// %(filename)s
''';
#####################################################################
#
# Lexer
#
# The PLY lexer module takes two things as input:
# - A list of token names (the string list 'tokens')
# - A regular expression describing a match for each token. The
# regexp for token FOO can be provided in two ways:
# - as a string variable named t_FOO
# - as the doc string for a function named t_FOO. In this case,
# the function is also executed, allowing an action to be
# associated with each token match.
#
#####################################################################
# Reserved words. These are listed separately as they are matched
# using the same regexp as generic IDs, but distinguished in the
# t_ID() function. The PLY documentation suggests this approach.
reserved = (
'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
)
# List of tokens. The lex module requires this.
tokens = reserved + (
# identifier
'ID',
# integer literal
'INTLIT',
# string literal
'STRLIT',
# code literal
'CODELIT',
# ( ) [ ] { } < > , ; . : :: *
'LPAREN', 'RPAREN',
'LBRACKET', 'RBRACKET',
'LBRACE', 'RBRACE',
'LESS', 'GREATER', 'EQUALS',
'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
'ASTERISK',
# C preprocessor directives
'CPPDIRECTIVE'
# The following are matched but never returned. commented out to
# suppress PLY warning
# newfile directive
# 'NEWFILE',
# endfile directive
# 'ENDFILE'
)
# Regular expressions for token matching
t_LPAREN = r'\('
t_RPAREN = r'\)'
t_LBRACKET = r'\['
t_RBRACKET = r'\]'
t_LBRACE = r'\{'
t_RBRACE = r'\}'
t_LESS = r'\<'
t_GREATER = r'\>'
t_EQUALS = r'='
t_COMMA = r','
t_SEMI = r';'
t_DOT = r'\.'
t_COLON = r':'
t_DBLCOLON = r'::'
t_ASTERISK = r'\*'
# Identifiers and reserved words
reserved_map = { }
for r in reserved:
reserved_map[r.lower()] = r
def t_ID(self, t):
r'[A-Za-z_]\w*'
t.type = self.reserved_map.get(t.value, 'ID')
return t
# Integer literal
def t_INTLIT(self, t):
r'-?(0x[\da-fA-F]+)|\d+'
try:
t.value = int(t.value,0)
except ValueError:
error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
t.value = 0
return t
# String literal. Note that these use only single quotes, and
# can span multiple lines.
def t_STRLIT(self, t):
r"(?m)'([^'])+'"
# strip off quotes
t.value = t.value[1:-1]
t.lexer.lineno += t.value.count('\n')
return t
# "Code literal"... like a string literal, but delimiters are
# '{{' and '}}' so they get formatted nicely under emacs c-mode
def t_CODELIT(self, t):
r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
# strip off {{ & }}
t.value = t.value[2:-2]
t.lexer.lineno += t.value.count('\n')
return t
def t_CPPDIRECTIVE(self, t):
r'^\#[^\#].*\n'
t.lexer.lineno += t.value.count('\n')
return t
def t_NEWFILE(self, t):
r'^\#\#newfile\s+"[^"]*"\n'
self.fileNameStack.push(t.lexer.lineno)
t.lexer.lineno = LineTracker(t.value[11:-2])
def t_ENDFILE(self, t):
r'^\#\#endfile\n'
t.lexer.lineno = self.fileNameStack.pop()
#
# The functions t_NEWLINE, t_ignore, and t_error are
# special for the lex module.
#
# Newlines
def t_NEWLINE(self, t):
r'\n+'
t.lexer.lineno += t.value.count('\n')
# Comments
def t_comment(self, t):
r'//.*'
# Completely ignored characters
t_ignore = ' \t\x0c'
# Error handler
def t_error(self, t):
error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
t.skip(1)
#####################################################################
#
# Parser
#
# Every function whose name starts with 'p_' defines a grammar
# rule. The rule is encoded in the function's doc string, while
# the function body provides the action taken when the rule is
# matched. The argument to each function is a list of the values
# of the rule's symbols: t[0] for the LHS, and t[1..n] for the
# symbols on the RHS. For tokens, the value is copied from the
# t.value attribute provided by the lexer. For non-terminals, the
# value is assigned by the producing rule; i.e., the job of the
# grammar rule function is to set the value for the non-terminal
# on the LHS (by assigning to t[0]).
#####################################################################
# The LHS of the first grammar rule is used as the start symbol
# (in this case, 'specification'). Note that this rule enforces
# that there will be exactly one namespace declaration, with 0 or
# more global defs/decls before and after it. The defs & decls
# before the namespace decl will be outside the namespace; those
# after will be inside. The decoder function is always inside the
# namespace.
def p_specification(self, t):
'specification : opt_defs_and_outputs top_level_decode_block'
for f in self.splits.keys():
f.write('\n#endif\n')
for f in self.files.values(): # close ALL the files;
f.close() # not doing so can cause compilation to fail
self.write_top_level_files()
t[0] = True
# 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
# output statements. Its productions do the hard work of eventually
# instantiating a GenCode, which are generally emitted (written to disk)
# as soon as possible, except for the decode_block, which has to be
# accumulated into one large function of nested switch/case blocks.
def p_opt_defs_and_outputs_0(self, t):
'opt_defs_and_outputs : empty'
def p_opt_defs_and_outputs_1(self, t):
'opt_defs_and_outputs : defs_and_outputs'
def p_defs_and_outputs_0(self, t):
'defs_and_outputs : def_or_output'
def p_defs_and_outputs_1(self, t):
'defs_and_outputs : defs_and_outputs def_or_output'
# The list of possible definition/output statements.
# They are all processed as they are seen.
def p_def_or_output(self, t):
'''def_or_output : name_decl
| def_format
| def_bitfield
| def_bitfield_struct
| def_template
| def_operand_types
| def_operands
| output
| global_let
| split'''
# Utility function used by both invocations of splitting - explicit
# 'split' keyword and split() function inside "let {{ }};" blocks.
def split(self, sec, write=False):
assert(sec != 'header' and "header cannot be split")
f = self.get_file(sec)
self.splits[f] += 1
s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
if write:
f.write(s)
else:
return s
# split output file to reduce compilation time
def p_split(self, t):
'split : SPLIT output_type SEMI'
assert(self.isa_name and "'split' not allowed before namespace decl")
self.split(t[2], True)
def p_output_type(self, t):
'''output_type : DECODER
| HEADER
| EXEC'''
t[0] = t[1]
# ISA name declaration looks like "namespace <foo>;"
def p_name_decl(self, t):
'name_decl : NAMESPACE ID SEMI'
assert(self.isa_name == None and "Only 1 namespace decl permitted")
self.isa_name = t[2]
self.namespace = t[2] + 'Inst'
# Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
# directly to the appropriate output section.
# Massage output block by substituting in template definitions and
# bit operators. We handle '%'s embedded in the string that don't
# indicate template substitutions by doubling them first so that the
# format operation will reduce them back to single '%'s.
def process_output(self, s):
s = self.protectNonSubstPercents(s)
return substBitOps(s % self.templateMap)
def p_output(self, t):
'output : OUTPUT output_type CODELIT SEMI'
kwargs = { t[2]+'_output' : self.process_output(t[3]) }
GenCode(self, **kwargs).emit()
def make_split(self):
def _split(sec):
return self.split(sec)
return _split
# global let blocks 'let {{...}}' (Python code blocks) are
# executed directly when seen. Note that these execute in a
# special variable context 'exportContext' to prevent the code
# from polluting this script's namespace.
def p_global_let(self, t):
'global_let : LET CODELIT SEMI'
self.updateExportContext()
self.exportContext["header_output"] = ''
self.exportContext["decoder_output"] = ''
self.exportContext["exec_output"] = ''
self.exportContext["decode_block"] = ''
self.exportContext["split"] = self.make_split()
split_setup = '''
def wrap(func):
def split(sec):
globals()[sec + '_output'] += func(sec)
return split
split = wrap(split)
del wrap
'''
# This tricky setup (immediately above) allows us to just write
# (e.g.) "split('exec')" in the Python code and the split #ifdef's
# will automatically be added to the exec_output variable. The inner
# Python execution environment doesn't know about the split points,
# so we carefully inject and wrap a closure that can retrieve the
# next split's #define from the parser and add it to the current
# emission-in-progress.
try:
exec(split_setup+fixPythonIndentation(t[2]), self.exportContext)
except Exception as exc:
traceback.print_exc(file=sys.stdout)
if debug:
raise
error(t.lineno(1), 'In global let block: %s' % exc)
GenCode(self,
header_output=self.exportContext["header_output"],
decoder_output=self.exportContext["decoder_output"],
exec_output=self.exportContext["exec_output"],
decode_block=self.exportContext["decode_block"]).emit()
# Define the mapping from operand type extensions to C++ types and
# bit widths (stored in operandTypeMap).
def p_def_operand_types(self, t):
'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
try:
self.operandTypeMap = eval('{' + t[3] + '}')
except Exception as exc:
if debug:
raise
error(t.lineno(1),
'In def operand_types: %s' % exc)
# Define the mapping from operand names to operand classes and
# other traits. Stored in operandNameMap.
def p_def_operands(self, t):
'def_operands : DEF OPERANDS CODELIT SEMI'
if not hasattr(self, 'operandTypeMap'):
error(t.lineno(1),
'error: operand types must be defined before operands')
try:
user_dict = eval('{' + t[3] + '}', self.exportContext)
except Exception as exc:
if debug:
raise
error(t.lineno(1), 'In def operands: %s' % exc)
self.buildOperandNameMap(user_dict, t.lexer.lineno)
# A bitfield definition looks like:
# 'def [signed] bitfield <ID> [<first>:<last>]'
# This generates a preprocessor macro in the output file.
def p_def_bitfield_0(self, t):
'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
if (t[2] == 'signed'):
expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
GenCode(self, header_output=hash_define).emit()
# alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
def p_def_bitfield_1(self, t):
'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
if (t[2] == 'signed'):
expr = 'sext<%d>(%s)' % (1, expr)
hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
GenCode(self, header_output=hash_define).emit()
# alternate form for structure member: 'def bitfield <ID> <ID>'
def p_def_bitfield_struct(self, t):
'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
if (t[2] != ''):
error(t.lineno(1),
'error: structure bitfields are always unsigned.')
expr = 'machInst.%s' % t[5]
hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
GenCode(self, header_output=hash_define).emit()
def p_id_with_dot_0(self, t):
'id_with_dot : ID'
t[0] = t[1]
def p_id_with_dot_1(self, t):
'id_with_dot : ID DOT id_with_dot'
t[0] = t[1] + t[2] + t[3]
def p_opt_signed_0(self, t):
'opt_signed : SIGNED'
t[0] = t[1]
def p_opt_signed_1(self, t):
'opt_signed : empty'
t[0] = ''
def p_def_template(self, t):
'def_template : DEF TEMPLATE ID CODELIT SEMI'
if t[3] in self.templateMap:
print("warning: template %s already defined" % t[3])
self.templateMap[t[3]] = Template(self, t[4])
# An instruction format definition looks like
# "def format <fmt>(<params>) {{...}};"
def p_def_format(self, t):
'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
(id, params, code) = (t[3], t[5], t[7])
self.defFormat(id, params, code, t.lexer.lineno)
# The formal parameter list for an instruction format is a
# possibly empty list of comma-separated parameters. Positional
# (standard, non-keyword) parameters must come first, followed by
# keyword parameters, followed by a '*foo' parameter that gets
# excess positional arguments (as in Python). Each of these three
# parameter categories is optional.
#
# Note that we do not support the '**foo' parameter for collecting
# otherwise undefined keyword args. Otherwise the parameter list
# is (I believe) identical to what is supported in Python.
#
# The param list generates a tuple, where the first element is a
# list of the positional params and the second element is a dict
# containing the keyword params.
def p_param_list_0(self, t):
'param_list : positional_param_list COMMA nonpositional_param_list'
t[0] = t[1] + t[3]
def p_param_list_1(self, t):
'''param_list : positional_param_list
| nonpositional_param_list'''
t[0] = t[1]
def p_positional_param_list_0(self, t):
'positional_param_list : empty'
t[0] = []
def p_positional_param_list_1(self, t):
'positional_param_list : ID'
t[0] = [t[1]]
def p_positional_param_list_2(self, t):
'positional_param_list : positional_param_list COMMA ID'
t[0] = t[1] + [t[3]]
def p_nonpositional_param_list_0(self, t):
'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
t[0] = t[1] + t[3]
def p_nonpositional_param_list_1(self, t):
'''nonpositional_param_list : keyword_param_list
| excess_args_param'''
t[0] = t[1]
def p_keyword_param_list_0(self, t):
'keyword_param_list : keyword_param'
t[0] = [t[1]]
def p_keyword_param_list_1(self, t):
'keyword_param_list : keyword_param_list COMMA keyword_param'
t[0] = t[1] + [t[3]]
def p_keyword_param(self, t):
'keyword_param : ID EQUALS expr'
t[0] = t[1] + ' = ' + t[3].__repr__()
def p_excess_args_param(self, t):
'excess_args_param : ASTERISK ID'
# Just concatenate them: '*ID'. Wrap in list to be consistent
# with positional_param_list and keyword_param_list.
t[0] = [t[1] + t[2]]
# End of format definition-related rules.
##############
#
# A decode block looks like:
# decode <field1> [, <field2>]* [default <inst>] { ... }
#
def p_top_level_decode_block(self, t):
'top_level_decode_block : decode_block'
codeObj = t[1]
codeObj.wrap_decode_block('''
StaticInstPtr
%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
{
using namespace %(namespace)s;
''' % self, '}')
codeObj.emit()
def p_decode_block(self, t):
'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
default_defaults = self.defaultStack.pop()
codeObj = t[5]
# use the "default defaults" only if there was no explicit
# default statement in decode_stmt_list
if not codeObj.has_decode_default:
codeObj += default_defaults
codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
t[0] = codeObj
# The opt_default statement serves only to push the "default
# defaults" onto defaultStack. This value will be used by nested
# decode blocks, and used and popped off when the current
# decode_block is processed (in p_decode_block() above).
def p_opt_default_0(self, t):
'opt_default : empty'
# no default specified: reuse the one currently at the top of
# the stack
self.defaultStack.push(self.defaultStack.top())
# no meaningful value returned
t[0] = None
def p_opt_default_1(self, t):
'opt_default : DEFAULT inst'
# push the new default
codeObj = t[2]
codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
self.defaultStack.push(codeObj)
# no meaningful value returned
t[0] = None
def p_decode_stmt_list_0(self, t):
'decode_stmt_list : decode_stmt'
t[0] = t[1]
def p_decode_stmt_list_1(self, t):
'decode_stmt_list : decode_stmt decode_stmt_list'
if (t[1].has_decode_default and t[2].has_decode_default):
error(t.lineno(1), 'Two default cases in decode block')
t[0] = t[1] + t[2]
#
# Decode statement rules
#
# There are four types of statements allowed in a decode block:
# 1. Format blocks 'format <foo> { ... }'
# 2. Nested decode blocks
# 3. Instruction definitions.
# 4. C preprocessor directives.
# Preprocessor directives found in a decode statement list are
# passed through to the output, replicated to all of the output
# code streams. This works well for ifdefs, so we can ifdef out
# both the declarations and the decode cases generated by an
# instruction definition. Handling them as part of the grammar
# makes it easy to keep them in the right place with respect to
# the code generated by the other statements.
def p_decode_stmt_cpp(self, t):
'decode_stmt : CPPDIRECTIVE'
t[0] = GenCode(self, t[1], t[1], t[1], t[1])
# A format block 'format <foo> { ... }' sets the default
# instruction format used to handle instruction definitions inside
# the block. This format can be overridden by using an explicit
# format on the instruction definition or with a nested format
# block.
def p_decode_stmt_format(self, t):
'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
# The format will be pushed on the stack when 'push_format_id'
# is processed (see below). Once the parser has recognized
# the full production (though the right brace), we're done
# with the format, so now we can pop it.
self.formatStack.pop()
t[0] = t[4]
# This rule exists so we can set the current format (& push the
# stack) when we recognize the format name part of the format
# block.
def p_push_format_id(self, t):
'push_format_id : ID'
try:
self.formatStack.push(self.formatMap[t[1]])
t[0] = ('', '// format %s' % t[1])
except KeyError:
error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
# Nested decode block: if the value of the current field matches
# the specified constant(s), do a nested decode on some other field.
def p_decode_stmt_decode(self, t):
'decode_stmt : case_list COLON decode_block'
case_list = t[1]
codeObj = t[3]
# just wrap the decoding code from the block as a case in the
# outer switch statement.
codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list),
'M5_UNREACHABLE;\n')
codeObj.has_decode_default = (case_list == ['default:'])
t[0] = codeObj
# Instruction definition (finally!).
def p_decode_stmt_inst(self, t):
'decode_stmt : case_list COLON inst SEMI'
case_list = t[1]
codeObj = t[3]
codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
codeObj.has_decode_default = (case_list == ['default:'])
t[0] = codeObj
# The constant list for a decode case label must be non-empty, and must
# either be the keyword 'default', or made up of one or more
# comma-separated integer literals or strings which evaluate to
# constants when compiled as C++.
def p_case_list_0(self, t):
'case_list : DEFAULT'
t[0] = ['default:']
def prep_int_lit_case_label(self, lit):
if lit >= 2**32:
return 'case ULL(%#x): ' % lit
else:
return 'case %#x: ' % lit
def prep_str_lit_case_label(self, lit):
return 'case %s: ' % lit
def p_case_list_1(self, t):
'case_list : INTLIT'
t[0] = [self.prep_int_lit_case_label(t[1])]
def p_case_list_2(self, t):
'case_list : STRLIT'
t[0] = [self.prep_str_lit_case_label(t[1])]
def p_case_list_3(self, t):
'case_list : case_list COMMA INTLIT'
t[0] = t[1]
t[0].append(self.prep_int_lit_case_label(t[3]))
def p_case_list_4(self, t):
'case_list : case_list COMMA STRLIT'
t[0] = t[1]
t[0].append(self.prep_str_lit_case_label(t[3]))
# Define an instruction using the current instruction format
# (specified by an enclosing format block).
# "<mnemonic>(<args>)"
def p_inst_0(self, t):
'inst : ID LPAREN arg_list RPAREN'
# Pass the ID and arg list to the current format class to deal with.
currentFormat = self.formatStack.top()
codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
args = ','.join(list(map(str, t[3])))
args = re.sub('(?m)^', '//', args)
args = re.sub('^//', '', args)
comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
codeObj.prepend_all(comment)
t[0] = codeObj
# Define an instruction using an explicitly specified format:
# "<fmt>::<mnemonic>(<args>)"
def p_inst_1(self, t):
'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
try:
format = self.formatMap[t[1]]
except KeyError:
error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
codeObj.prepend_all(comment)
t[0] = codeObj
# The arg list generates a tuple, where the first element is a
# list of the positional args and the second element is a dict
# containing the keyword args.
def p_arg_list_0(self, t):
'arg_list : positional_arg_list COMMA keyword_arg_list'
t[0] = ( t[1], t[3] )
def p_arg_list_1(self, t):
'arg_list : positional_arg_list'
t[0] = ( t[1], {} )
def p_arg_list_2(self, t):
'arg_list : keyword_arg_list'
t[0] = ( [], t[1] )
def p_positional_arg_list_0(self, t):
'positional_arg_list : empty'
t[0] = []
def p_positional_arg_list_1(self, t):
'positional_arg_list : expr'
t[0] = [t[1]]
def p_positional_arg_list_2(self, t):
'positional_arg_list : positional_arg_list COMMA expr'
t[0] = t[1] + [t[3]]
def p_keyword_arg_list_0(self, t):
'keyword_arg_list : keyword_arg'
t[0] = t[1]
def p_keyword_arg_list_1(self, t):
'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
t[0] = t[1]
t[0].update(t[3])
def p_keyword_arg(self, t):
'keyword_arg : ID EQUALS expr'
t[0] = { t[1] : t[3] }
#
# Basic expressions. These constitute the argument values of
# "function calls" (i.e. instruction definitions in the decode
# block) and default values for formal parameters of format
# functions.
#
# Right now, these are either strings, integers, or (recursively)
# lists of exprs (using Python square-bracket list syntax). Note
# that bare identifiers are trated as string constants here (since
# there isn't really a variable namespace to refer to).
#
def p_expr_0(self, t):
'''expr : ID
| INTLIT
| STRLIT
| CODELIT'''
t[0] = t[1]
def p_expr_1(self, t):
'''expr : LBRACKET list_expr RBRACKET'''
t[0] = t[2]
def p_list_expr_0(self, t):
'list_expr : expr'
t[0] = [t[1]]
def p_list_expr_1(self, t):
'list_expr : list_expr COMMA expr'
t[0] = t[1] + [t[3]]
def p_list_expr_2(self, t):
'list_expr : empty'
t[0] = []
#
# Empty production... use in other rules for readability.
#
def p_empty(self, t):
'empty :'
pass
# Parse error handler. Note that the argument here is the
# offending *token*, not a grammar symbol (hence the need to use
# t.value)
def p_error(self, t):
if t:
error(t.lexer.lineno, "syntax error at '%s'" % t.value)
else:
error("unknown syntax error")
# END OF GRAMMAR RULES
def updateExportContext(self):
# create a continuation that allows us to grab the current parser
def wrapInstObjParams(*args):
return InstObjParams(self, *args)
self.exportContext['InstObjParams'] = wrapInstObjParams
self.exportContext.update(self.templateMap)
def defFormat(self, id, params, code, lineno):
'''Define a new format'''
# make sure we haven't already defined this one
if id in self.formatMap:
error(lineno, 'format %s redefined.' % id)
# create new object and store in global map
self.formatMap[id] = Format(id, params, code)
def protectNonSubstPercents(self, s):
'''Protect any non-dict-substitution '%'s in a format string
(i.e. those not followed by '(')'''
return re.sub(r'%(?!\()', '%%', s)
def buildOperandNameMap(self, user_dict, lineno):
operand_name = {}
for op_name, val in user_dict.items():
# Check if extra attributes have been specified.
if len(val) > 9:
error(lineno, 'error: too many attributes for operand "%s"' %
base_cls_name)
# Pad val with None in case optional args are missing
val += (None, None, None, None)
base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
read_code, write_code, read_predicate, write_predicate = val[:9]
# Canonical flag structure is a triple of lists, where each list
# indicates the set of flags implied by this operand always, when
# used as a source, and when used as a dest, respectively.
# For simplicity this can be initialized using a variety of fairly
# obvious shortcuts; we convert these to canonical form here.
if not flags:
# no flags specified (e.g., 'None')
flags = ( [], [], [] )
elif isinstance(flags, str):
# a single flag: assumed to be unconditional
flags = ( [ flags ], [], [] )
elif isinstance(flags, list):
# a list of flags: also assumed to be unconditional
flags = ( flags, [], [] )
elif isinstance(flags, tuple):
# it's a tuple: it should be a triple,
# but each item could be a single string or a list
(uncond_flags, src_flags, dest_flags) = flags
flags = (makeList(uncond_flags),
makeList(src_flags), makeList(dest_flags))
# Accumulate attributes of new operand class in tmp_dict
tmp_dict = {}
attrList = ['reg_spec', 'flags', 'sort_pri',
'read_code', 'write_code',
'read_predicate', 'write_predicate']
if dflt_ext:
dflt_ctype = self.operandTypeMap[dflt_ext]
attrList.extend(['dflt_ctype', 'dflt_ext'])
# reg_spec is either just a string or a dictionary
# (for elems of vector)
if isinstance(reg_spec, tuple):
(reg_spec, elem_spec) = reg_spec
if isinstance(elem_spec, str):
attrList.append('elem_spec')
else:
assert(isinstance(elem_spec, dict))
elems = elem_spec
attrList.append('elems')
for attr in attrList:
tmp_dict[attr] = eval(attr)
tmp_dict['base_name'] = op_name
# New class name will be e.g. "IntReg_Ra"
cls_name = base_cls_name + '_' + op_name
# Evaluate string arg to get class object. Note that the
# actual base class for "IntReg" is "IntRegOperand", i.e. we
# have to append "Operand".
try:
base_cls = eval(base_cls_name + 'Operand')
except NameError:
error(lineno,
'error: unknown operand base class "%s"' % base_cls_name)
# The following statement creates a new class called
# <cls_name> as a subclass of <base_cls> with the attributes
# in tmp_dict, just as if we evaluated a class declaration.
operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
self.operandNameMap = operand_name
# Define operand variables.
operands = list(user_dict.keys())
# Add the elems defined in the vector operands and
# build a map elem -> vector (used in OperandList)
elem_to_vec = {}
for op in user_dict.keys():
if hasattr(self.operandNameMap[op], 'elems'):
for elem in self.operandNameMap[op].elems.keys():
operands.append(elem)
elem_to_vec[elem] = op
self.elemToVector = elem_to_vec
extensions = self.operandTypeMap.keys()
operandsREString = r'''
(?<!\w) # neg. lookbehind assertion: prevent partial matches
((%s)(?:_(%s))?) # match: operand with optional '_' then suffix
(?!\w) # neg. lookahead assertion: prevent partial matches
''' % ('|'.join(operands), '|'.join(extensions))
self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
# Same as operandsREString, but extension is mandatory, and only two
# groups are returned (base and ext, not full name as above).
# Used for subtituting '_' for '.' to make C++ identifiers.
operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
% ('|'.join(operands), '|'.join(extensions))
self.operandsWithExtRE = \
re.compile(operandsWithExtREString, re.MULTILINE)
def substMungedOpNames(self, code):
'''Munge operand names in code string to make legal C++
variable names. This means getting rid of the type extension
if any. Will match base_name attribute of Operand object.)'''
return self.operandsWithExtRE.sub(r'\1', code)
def mungeSnippet(self, s):
'''Fix up code snippets for final substitution in templates.'''
if isinstance(s, str):
return self.substMungedOpNames(substBitOps(s))
else:
return s
def open(self, name, bare=False):
'''Open the output file for writing and include scary warning.'''
filename = os.path.join(self.output_dir, name)
f = open(filename, 'w')
if f:
if not bare:
f.write(ISAParser.scaremonger_template % self)
return f
def update(self, file, contents):
'''Update the output file only. Scons should handle the case when
the new contents are unchanged using its built-in hash feature.'''
f = self.open(file)
f.write(contents)
f.close()
# This regular expression matches '##include' directives
includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
re.MULTILINE)
def replace_include(self, matchobj, dirname):
"""Function to replace a matched '##include' directive with the
contents of the specified file (with nested ##includes
replaced recursively). 'matchobj' is an re match object
(from a match of includeRE) and 'dirname' is the directory
relative to which the file path should be resolved."""
fname = matchobj.group('filename')
full_fname = os.path.normpath(os.path.join(dirname, fname))
contents = '##newfile "%s"\n%s\n##endfile\n' % \
(full_fname, self.read_and_flatten(full_fname))
return contents
def read_and_flatten(self, filename):
"""Read a file and recursively flatten nested '##include' files."""
current_dir = os.path.dirname(filename)
try:
contents = open(filename).read()
except IOError:
error('Error including file "%s"' % filename)
self.fileNameStack.push(LineTracker(filename))
# Find any includes and include them
def replace(matchobj):
return self.replace_include(matchobj, current_dir)
contents = self.includeRE.sub(replace, contents)
self.fileNameStack.pop()
return contents
AlreadyGenerated = {}
def _parse_isa_desc(self, isa_desc_file):
'''Read in and parse the ISA description.'''
# The build system can end up running the ISA parser twice: once to
# finalize the build dependencies, and then to actually generate
# the files it expects (in src/arch/$ARCH/generated). This code
# doesn't do anything different either time, however; the SCons
# invocations just expect different things. Since this code runs
# within SCons, we can just remember that we've already run and
# not perform a completely unnecessary run, since the ISA parser's
# effect is idempotent.
if isa_desc_file in ISAParser.AlreadyGenerated:
return
# grab the last three path components of isa_desc_file
self.filename = '/'.join(isa_desc_file.split('/')[-3:])
# Read file and (recursively) all included files into a string.
# PLY requires that the input be in a single string so we have to
# do this up front.
isa_desc = self.read_and_flatten(isa_desc_file)
# Initialize lineno tracker
self.lex.lineno = LineTracker(isa_desc_file)
# Parse.
self.parse_string(isa_desc)
ISAParser.AlreadyGenerated[isa_desc_file] = None
def parse_isa_desc(self, *args, **kwargs):
try:
self._parse_isa_desc(*args, **kwargs)
except ISAParserError as e:
print(backtrace(self.fileNameStack))
print("At %s:" % e.lineno)
print(e)
sys.exit(1)
# Called as script: get args from command line.
# Args are: <isa desc file> <output dir>
if __name__ == '__main__':
ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])