| /* |
| * Copyright (c) 2020 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 1999-2013 Mark D. Hill and David A. Wood |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| machine(MachineType:L1Cache, "MESI Directory L1 Cache CMP") |
| : Sequencer * sequencer; |
| CacheMemory * L1Icache; |
| CacheMemory * L1Dcache; |
| RubyPrefetcher * prefetcher; |
| int l2_select_num_bits; |
| Cycles l1_request_latency := 2; |
| Cycles l1_response_latency := 2; |
| Cycles to_l2_latency := 1; |
| bool send_evictions; |
| bool enable_prefetch := "False"; |
| |
| // Message Queues |
| // From this node's L1 cache TO the network |
| |
| // a local L1 -> this L2 bank, currently ordered with directory forwarded requests |
| MessageBuffer * requestFromL1Cache, network="To", virtual_network="0", |
| vnet_type="request"; |
| |
| // a local L1 -> this L2 bank |
| MessageBuffer * responseFromL1Cache, network="To", virtual_network="1", |
| vnet_type="response"; |
| |
| MessageBuffer * unblockFromL1Cache, network="To", virtual_network="2", |
| vnet_type="unblock"; |
| |
| |
| // To this node's L1 cache FROM the network |
| // a L2 bank -> this L1 |
| MessageBuffer * requestToL1Cache, network="From", virtual_network="2", |
| vnet_type="request"; |
| |
| // a L2 bank -> this L1 |
| MessageBuffer * responseToL1Cache, network="From", virtual_network="1", |
| vnet_type="response"; |
| |
| // Request Buffer for prefetches |
| MessageBuffer * optionalQueue; |
| |
| // Buffer for requests generated by the processor core. |
| MessageBuffer * mandatoryQueue; |
| { |
| // STATES |
| state_declaration(State, desc="Cache states", default="L1Cache_State_I") { |
| // Base states |
| NP, AccessPermission:Invalid, desc="Not present in either cache"; |
| I, AccessPermission:Invalid, desc="a L1 cache entry Idle"; |
| S, AccessPermission:Read_Only, desc="a L1 cache entry Shared"; |
| E, AccessPermission:Read_Only, desc="a L1 cache entry Exclusive"; |
| M, AccessPermission:Read_Write, desc="a L1 cache entry Modified", format="!b"; |
| |
| // Transient States |
| IS, AccessPermission:Busy, desc="L1 idle, issued GETS, have not seen response yet"; |
| IM, AccessPermission:Busy, desc="L1 idle, issued GETX, have not seen response yet"; |
| SM, AccessPermission:Read_Only, desc="L1 idle, issued GETX, have not seen response yet"; |
| IS_I, AccessPermission:Busy, desc="L1 idle, issued GETS, saw Inv before data because directory doesn't block on GETS hit"; |
| |
| M_I, AccessPermission:Busy, desc="L1 replacing, waiting for ACK"; |
| SINK_WB_ACK, AccessPermission:Busy, desc="This is to sink WB_Acks from L2"; |
| |
| // Transient States in which block is being prefetched |
| PF_IS, AccessPermission:Busy, desc="Issued GETS, have not seen response yet"; |
| PF_IM, AccessPermission:Busy, desc="Issued GETX, have not seen response yet"; |
| PF_SM, AccessPermission:Busy, desc="Issued GETX, received data, waiting for acks"; |
| PF_IS_I, AccessPermission:Busy, desc="Issued GETs, saw inv before data"; |
| } |
| |
| // EVENTS |
| enumeration(Event, desc="Cache events") { |
| // L1 events |
| Load, desc="Load request from the home processor"; |
| Ifetch, desc="I-fetch request from the home processor"; |
| Store, desc="Store request from the home processor"; |
| |
| Inv, desc="Invalidate request from L2 bank"; |
| |
| // internal generated request |
| L1_Replacement, desc="L1 Replacement", format="!r"; |
| PF_L1_Replacement, desc="Prefetch L1 Replacement", format="!pr"; |
| |
| // other requests |
| Fwd_GETX, desc="GETX from other processor"; |
| Fwd_GETS, desc="GETS from other processor"; |
| Fwd_GET_INSTR, desc="GET_INSTR from other processor"; |
| |
| Data, desc="Data for processor"; |
| Data_Exclusive, desc="Data for processor"; |
| DataS_fromL1, desc="data for GETS request, need to unblock directory"; |
| Data_all_Acks, desc="Data for processor, all acks"; |
| |
| Ack, desc="Ack for processor"; |
| Ack_all, desc="Last ack for processor"; |
| |
| WB_Ack, desc="Ack for replacement"; |
| |
| PF_Load, desc="load request from prefetcher"; |
| PF_Ifetch, desc="instruction fetch request from prefetcher"; |
| PF_Store, desc="exclusive load request from prefetcher"; |
| } |
| |
| // TYPES |
| |
| // CacheEntry |
| structure(Entry, desc="...", interface="AbstractCacheEntry" ) { |
| State CacheState, desc="cache state"; |
| DataBlock DataBlk, desc="data for the block"; |
| bool Dirty, default="false", desc="data is dirty"; |
| bool isPrefetch, desc="Set if this block was prefetched and not yet accessed"; |
| } |
| |
| // TBE fields |
| structure(TBE, desc="...") { |
| Addr addr, desc="Physical address for this TBE"; |
| State TBEState, desc="Transient state"; |
| DataBlock DataBlk, desc="Buffer for the data block"; |
| bool Dirty, default="false", desc="data is dirty"; |
| bool isPrefetch, desc="Set if this was caused by a prefetch"; |
| int pendingAcks, default="0", desc="number of pending acks"; |
| } |
| |
| structure(TBETable, external="yes") { |
| TBE lookup(Addr); |
| void allocate(Addr); |
| void deallocate(Addr); |
| bool isPresent(Addr); |
| } |
| |
| TBETable TBEs, template="<L1Cache_TBE>", constructor="m_number_of_TBEs"; |
| |
| int l2_select_low_bit, default="RubySystem::getBlockSizeBits()"; |
| |
| Tick clockEdge(); |
| Cycles ticksToCycles(Tick t); |
| void set_cache_entry(AbstractCacheEntry a); |
| void unset_cache_entry(); |
| void set_tbe(TBE a); |
| void unset_tbe(); |
| void wakeUpBuffers(Addr a); |
| void profileMsgDelay(int virtualNetworkType, Cycles c); |
| |
| // inclusive cache returns L1 entries only |
| Entry getCacheEntry(Addr addr), return_by_pointer="yes" { |
| Entry L1Dcache_entry := static_cast(Entry, "pointer", L1Dcache[addr]); |
| if(is_valid(L1Dcache_entry)) { |
| return L1Dcache_entry; |
| } |
| |
| Entry L1Icache_entry := static_cast(Entry, "pointer", L1Icache[addr]); |
| return L1Icache_entry; |
| } |
| |
| Entry getL1DCacheEntry(Addr addr), return_by_pointer="yes" { |
| Entry L1Dcache_entry := static_cast(Entry, "pointer", L1Dcache[addr]); |
| return L1Dcache_entry; |
| } |
| |
| Entry getL1ICacheEntry(Addr addr), return_by_pointer="yes" { |
| Entry L1Icache_entry := static_cast(Entry, "pointer", L1Icache[addr]); |
| return L1Icache_entry; |
| } |
| |
| State getState(TBE tbe, Entry cache_entry, Addr addr) { |
| assert((L1Dcache.isTagPresent(addr) && L1Icache.isTagPresent(addr)) == false); |
| |
| if(is_valid(tbe)) { |
| return tbe.TBEState; |
| } else if (is_valid(cache_entry)) { |
| return cache_entry.CacheState; |
| } |
| return State:NP; |
| } |
| |
| void setState(TBE tbe, Entry cache_entry, Addr addr, State state) { |
| assert((L1Dcache.isTagPresent(addr) && L1Icache.isTagPresent(addr)) == false); |
| |
| // MUST CHANGE |
| if(is_valid(tbe)) { |
| tbe.TBEState := state; |
| } |
| |
| if (is_valid(cache_entry)) { |
| cache_entry.CacheState := state; |
| } |
| } |
| |
| AccessPermission getAccessPermission(Addr addr) { |
| TBE tbe := TBEs[addr]; |
| if(is_valid(tbe)) { |
| DPRINTF(RubySlicc, "%s\n", L1Cache_State_to_permission(tbe.TBEState)); |
| return L1Cache_State_to_permission(tbe.TBEState); |
| } |
| |
| Entry cache_entry := getCacheEntry(addr); |
| if(is_valid(cache_entry)) { |
| DPRINTF(RubySlicc, "%s\n", L1Cache_State_to_permission(cache_entry.CacheState)); |
| return L1Cache_State_to_permission(cache_entry.CacheState); |
| } |
| |
| DPRINTF(RubySlicc, "%s\n", AccessPermission:NotPresent); |
| return AccessPermission:NotPresent; |
| } |
| |
| void functionalRead(Addr addr, Packet *pkt) { |
| TBE tbe := TBEs[addr]; |
| if(is_valid(tbe)) { |
| testAndRead(addr, tbe.DataBlk, pkt); |
| } else { |
| testAndRead(addr, getCacheEntry(addr).DataBlk, pkt); |
| } |
| } |
| |
| int functionalWrite(Addr addr, Packet *pkt) { |
| int num_functional_writes := 0; |
| |
| TBE tbe := TBEs[addr]; |
| if(is_valid(tbe)) { |
| num_functional_writes := num_functional_writes + |
| testAndWrite(addr, tbe.DataBlk, pkt); |
| return num_functional_writes; |
| } |
| |
| num_functional_writes := num_functional_writes + |
| testAndWrite(addr, getCacheEntry(addr).DataBlk, pkt); |
| return num_functional_writes; |
| } |
| |
| void setAccessPermission(Entry cache_entry, Addr addr, State state) { |
| if (is_valid(cache_entry)) { |
| cache_entry.changePermission(L1Cache_State_to_permission(state)); |
| } |
| } |
| |
| Event mandatory_request_type_to_event(RubyRequestType type) { |
| if (type == RubyRequestType:LD) { |
| return Event:Load; |
| } else if (type == RubyRequestType:IFETCH) { |
| return Event:Ifetch; |
| } else if ((type == RubyRequestType:ST) || (type == RubyRequestType:ATOMIC)) { |
| return Event:Store; |
| } else { |
| error("Invalid RubyRequestType"); |
| } |
| } |
| |
| Event prefetch_request_type_to_event(RubyRequestType type) { |
| if (type == RubyRequestType:LD) { |
| return Event:PF_Load; |
| } else if (type == RubyRequestType:IFETCH) { |
| return Event:PF_Ifetch; |
| } else if ((type == RubyRequestType:ST) || |
| (type == RubyRequestType:ATOMIC)) { |
| return Event:PF_Store; |
| } else { |
| error("Invalid RubyRequestType"); |
| } |
| } |
| |
| int getPendingAcks(TBE tbe) { |
| return tbe.pendingAcks; |
| } |
| |
| out_port(requestL1Network_out, RequestMsg, requestFromL1Cache); |
| out_port(responseL1Network_out, ResponseMsg, responseFromL1Cache); |
| out_port(unblockNetwork_out, ResponseMsg, unblockFromL1Cache); |
| out_port(optionalQueue_out, RubyRequest, optionalQueue); |
| |
| |
| // Prefetch queue between the controller and the prefetcher |
| // As per Spracklen et al. (HPCA 2005), the prefetch queue should be |
| // implemented as a LIFO structure. The structure would allow for fast |
| // searches of all entries in the queue, not just the head msg. All |
| // msgs in the structure can be invalidated if a demand miss matches. |
| in_port(optionalQueue_in, RubyRequest, optionalQueue, desc="...", rank = 3) { |
| if (optionalQueue_in.isReady(clockEdge())) { |
| peek(optionalQueue_in, RubyRequest) { |
| // Instruction Prefetch |
| if (in_msg.Type == RubyRequestType:IFETCH) { |
| Entry L1Icache_entry := getL1ICacheEntry(in_msg.LineAddress); |
| if (is_valid(L1Icache_entry)) { |
| // The block to be prefetched is already present in the |
| // cache. We should drop this request. |
| trigger(prefetch_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, |
| L1Icache_entry, TBEs[in_msg.LineAddress]); |
| } |
| |
| // Check to see if it is in the OTHER L1 |
| Entry L1Dcache_entry := getL1DCacheEntry(in_msg.LineAddress); |
| if (is_valid(L1Dcache_entry)) { |
| // The block is in the wrong L1 cache. We should drop |
| // this request. |
| trigger(prefetch_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, |
| L1Dcache_entry, TBEs[in_msg.LineAddress]); |
| } |
| |
| if (L1Icache.cacheAvail(in_msg.LineAddress)) { |
| // L1 does't have the line, but we have space for it |
| // in the L1 so let's see if the L2 has it |
| trigger(prefetch_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, |
| L1Icache_entry, TBEs[in_msg.LineAddress]); |
| } else { |
| // No room in the L1, so we need to make room in the L1 |
| Addr victim := L1Icache.cacheProbe(in_msg.LineAddress); |
| trigger(Event:PF_L1_Replacement, |
| victim, getL1ICacheEntry(victim), TBEs[victim]); |
| } |
| } else { |
| // Data prefetch |
| Entry L1Dcache_entry := getL1DCacheEntry(in_msg.LineAddress); |
| if (is_valid(L1Dcache_entry)) { |
| // The block to be prefetched is already present in the |
| // cache. We should drop this request. |
| trigger(prefetch_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, |
| L1Dcache_entry, TBEs[in_msg.LineAddress]); |
| } |
| |
| // Check to see if it is in the OTHER L1 |
| Entry L1Icache_entry := getL1ICacheEntry(in_msg.LineAddress); |
| if (is_valid(L1Icache_entry)) { |
| // The block is in the wrong L1. Just drop the prefetch |
| // request. |
| trigger(prefetch_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, |
| L1Icache_entry, TBEs[in_msg.LineAddress]); |
| } |
| |
| if (L1Dcache.cacheAvail(in_msg.LineAddress)) { |
| // L1 does't have the line, but we have space for it in |
| // the L1 let's see if the L2 has it |
| trigger(prefetch_request_type_to_event(in_msg.Type), |
| in_msg.LineAddress, |
| L1Dcache_entry, TBEs[in_msg.LineAddress]); |
| } else { |
| // No room in the L1, so we need to make room in the L1 |
| Addr victim := L1Dcache.cacheProbe(in_msg.LineAddress); |
| trigger(Event:PF_L1_Replacement, |
| victim, getL1DCacheEntry(victim), TBEs[victim]); |
| } |
| } |
| } |
| } |
| } |
| |
| // Response L1 Network - response msg to this L1 cache |
| in_port(responseL1Network_in, ResponseMsg, responseToL1Cache, rank = 2) { |
| if (responseL1Network_in.isReady(clockEdge())) { |
| peek(responseL1Network_in, ResponseMsg, block_on="addr") { |
| assert(in_msg.Destination.isElement(machineID)); |
| |
| Entry cache_entry := getCacheEntry(in_msg.addr); |
| TBE tbe := TBEs[in_msg.addr]; |
| |
| if(in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE) { |
| trigger(Event:Data_Exclusive, in_msg.addr, cache_entry, tbe); |
| } else if(in_msg.Type == CoherenceResponseType:DATA) { |
| if ((getState(tbe, cache_entry, in_msg.addr) == State:IS || |
| getState(tbe, cache_entry, in_msg.addr) == State:IS_I || |
| getState(tbe, cache_entry, in_msg.addr) == State:PF_IS || |
| getState(tbe, cache_entry, in_msg.addr) == State:PF_IS_I) && |
| machineIDToMachineType(in_msg.Sender) == MachineType:L1Cache) { |
| |
| trigger(Event:DataS_fromL1, in_msg.addr, cache_entry, tbe); |
| |
| } else if ( (getPendingAcks(tbe) - in_msg.AckCount) == 0 ) { |
| trigger(Event:Data_all_Acks, in_msg.addr, cache_entry, tbe); |
| } else { |
| trigger(Event:Data, in_msg.addr, cache_entry, tbe); |
| } |
| } else if (in_msg.Type == CoherenceResponseType:ACK) { |
| if ( (getPendingAcks(tbe) - in_msg.AckCount) == 0 ) { |
| trigger(Event:Ack_all, in_msg.addr, cache_entry, tbe); |
| } else { |
| trigger(Event:Ack, in_msg.addr, cache_entry, tbe); |
| } |
| } else if (in_msg.Type == CoherenceResponseType:WB_ACK) { |
| trigger(Event:WB_Ack, in_msg.addr, cache_entry, tbe); |
| } else { |
| error("Invalid L1 response type"); |
| } |
| } |
| } |
| } |
| |
| // Request InterChip network - request from this L1 cache to the shared L2 |
| in_port(requestL1Network_in, RequestMsg, requestToL1Cache, rank = 1) { |
| if(requestL1Network_in.isReady(clockEdge())) { |
| peek(requestL1Network_in, RequestMsg, block_on="addr") { |
| assert(in_msg.Destination.isElement(machineID)); |
| |
| Entry cache_entry := getCacheEntry(in_msg.addr); |
| TBE tbe := TBEs[in_msg.addr]; |
| |
| if (in_msg.Type == CoherenceRequestType:INV) { |
| trigger(Event:Inv, in_msg.addr, cache_entry, tbe); |
| } else if (in_msg.Type == CoherenceRequestType:GETX || |
| in_msg.Type == CoherenceRequestType:UPGRADE) { |
| // upgrade transforms to GETX due to race |
| trigger(Event:Fwd_GETX, in_msg.addr, cache_entry, tbe); |
| } else if (in_msg.Type == CoherenceRequestType:GETS) { |
| trigger(Event:Fwd_GETS, in_msg.addr, cache_entry, tbe); |
| } else if (in_msg.Type == CoherenceRequestType:GET_INSTR) { |
| trigger(Event:Fwd_GET_INSTR, in_msg.addr, cache_entry, tbe); |
| } else { |
| error("Invalid forwarded request type"); |
| } |
| } |
| } |
| } |
| |
| // Mandatory Queue betweens Node's CPU and it's L1 caches |
| in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...", rank = 0) { |
| if (mandatoryQueue_in.isReady(clockEdge())) { |
| peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") { |
| |
| // Check for data access to blocks in I-cache and ifetchs to blocks in D-cache |
| |
| if (in_msg.Type == RubyRequestType:IFETCH) { |
| // ** INSTRUCTION ACCESS *** |
| |
| Entry L1Icache_entry := getL1ICacheEntry(in_msg.LineAddress); |
| if (is_valid(L1Icache_entry)) { |
| // The tag matches for the L1, so the L1 asks the L2 for it. |
| trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress, |
| L1Icache_entry, TBEs[in_msg.LineAddress]); |
| } else { |
| |
| // Check to see if it is in the OTHER L1 |
| Entry L1Dcache_entry := getL1DCacheEntry(in_msg.LineAddress); |
| if (is_valid(L1Dcache_entry)) { |
| // The block is in the wrong L1, put the request on the queue to the shared L2 |
| trigger(Event:L1_Replacement, in_msg.LineAddress, |
| L1Dcache_entry, TBEs[in_msg.LineAddress]); |
| } |
| |
| if (L1Icache.cacheAvail(in_msg.LineAddress)) { |
| // L1 does't have the line, but we have space for it |
| // in the L1 so let's see if the L2 has it. |
| trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress, |
| L1Icache_entry, TBEs[in_msg.LineAddress]); |
| } else { |
| // No room in the L1, so we need to make room in the L1 |
| |
| // Check if the line we want to evict is not locked |
| Addr addr := L1Icache.cacheProbe(in_msg.LineAddress); |
| check_on_cache_probe(mandatoryQueue_in, addr); |
| |
| trigger(Event:L1_Replacement, addr, |
| getL1ICacheEntry(addr), |
| TBEs[addr]); |
| } |
| } |
| } else { |
| |
| // *** DATA ACCESS *** |
| Entry L1Dcache_entry := getL1DCacheEntry(in_msg.LineAddress); |
| if (is_valid(L1Dcache_entry)) { |
| // The tag matches for the L1, so the L1 ask the L2 for it |
| trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress, |
| L1Dcache_entry, TBEs[in_msg.LineAddress]); |
| } else { |
| |
| // Check to see if it is in the OTHER L1 |
| Entry L1Icache_entry := getL1ICacheEntry(in_msg.LineAddress); |
| if (is_valid(L1Icache_entry)) { |
| // The block is in the wrong L1, put the request on the queue to the shared L2 |
| trigger(Event:L1_Replacement, in_msg.LineAddress, |
| L1Icache_entry, TBEs[in_msg.LineAddress]); |
| } |
| |
| if (L1Dcache.cacheAvail(in_msg.LineAddress)) { |
| // L1 does't have the line, but we have space for it |
| // in the L1 let's see if the L2 has it. |
| trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress, |
| L1Dcache_entry, TBEs[in_msg.LineAddress]); |
| } else { |
| // No room in the L1, so we need to make room in the L1 |
| |
| // Check if the line we want to evict is not locked |
| Addr addr := L1Dcache.cacheProbe(in_msg.LineAddress); |
| check_on_cache_probe(mandatoryQueue_in, addr); |
| |
| trigger(Event:L1_Replacement, addr, |
| getL1DCacheEntry(addr), |
| TBEs[addr]); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void enqueuePrefetch(Addr address, RubyRequestType type) { |
| enqueue(optionalQueue_out, RubyRequest, 1) { |
| out_msg.LineAddress := address; |
| out_msg.Type := type; |
| out_msg.AccessMode := RubyAccessMode:Supervisor; |
| } |
| } |
| |
| // ACTIONS |
| action(a_issueGETS, "a", desc="Issue GETS") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| enqueue(requestL1Network_out, RequestMsg, l1_request_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:GETS; |
| out_msg.Requestor := machineID; |
| out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, |
| l2_select_low_bit, l2_select_num_bits, intToID(0))); |
| DPRINTF(RubySlicc, "address: %#x, destination: %s\n", |
| address, out_msg.Destination); |
| out_msg.MessageSize := MessageSizeType:Control; |
| out_msg.Prefetch := in_msg.Prefetch; |
| out_msg.AccessMode := in_msg.AccessMode; |
| } |
| } |
| } |
| |
| action(pa_issuePfGETS, "pa", desc="Issue prefetch GETS") { |
| peek(optionalQueue_in, RubyRequest) { |
| enqueue(requestL1Network_out, RequestMsg, l1_request_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:GETS; |
| out_msg.Requestor := machineID; |
| out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, |
| l2_select_low_bit, l2_select_num_bits, intToID(0))); |
| DPRINTF(RubySlicc, "address: %#x, destination: %s\n", |
| address, out_msg.Destination); |
| out_msg.MessageSize := MessageSizeType:Control; |
| out_msg.Prefetch := in_msg.Prefetch; |
| out_msg.AccessMode := in_msg.AccessMode; |
| } |
| } |
| } |
| |
| action(ai_issueGETINSTR, "ai", desc="Issue GETINSTR") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| enqueue(requestL1Network_out, RequestMsg, l1_request_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:GET_INSTR; |
| out_msg.Requestor := machineID; |
| out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, |
| l2_select_low_bit, l2_select_num_bits, intToID(0))); |
| DPRINTF(RubySlicc, "address: %#x, destination: %s\n", |
| address, out_msg.Destination); |
| out_msg.MessageSize := MessageSizeType:Control; |
| out_msg.Prefetch := in_msg.Prefetch; |
| out_msg.AccessMode := in_msg.AccessMode; |
| } |
| } |
| } |
| |
| action(pai_issuePfGETINSTR, "pai", |
| desc="Issue GETINSTR for prefetch request") { |
| peek(optionalQueue_in, RubyRequest) { |
| enqueue(requestL1Network_out, RequestMsg, l1_request_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:GET_INSTR; |
| out_msg.Requestor := machineID; |
| out_msg.Destination.add( |
| mapAddressToRange(address, MachineType:L2Cache, |
| l2_select_low_bit, l2_select_num_bits, intToID(0))); |
| out_msg.MessageSize := MessageSizeType:Control; |
| out_msg.Prefetch := in_msg.Prefetch; |
| out_msg.AccessMode := in_msg.AccessMode; |
| |
| DPRINTF(RubySlicc, "address: %#x, destination: %s\n", |
| address, out_msg.Destination); |
| } |
| } |
| } |
| |
| action(b_issueGETX, "b", desc="Issue GETX") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| enqueue(requestL1Network_out, RequestMsg, l1_request_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:GETX; |
| out_msg.Requestor := machineID; |
| DPRINTF(RubySlicc, "%s\n", machineID); |
| out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, |
| l2_select_low_bit, l2_select_num_bits, intToID(0))); |
| DPRINTF(RubySlicc, "address: %#x, destination: %s\n", |
| address, out_msg.Destination); |
| out_msg.MessageSize := MessageSizeType:Control; |
| out_msg.Prefetch := in_msg.Prefetch; |
| out_msg.AccessMode := in_msg.AccessMode; |
| } |
| } |
| } |
| |
| action(pb_issuePfGETX, "pb", desc="Issue prefetch GETX") { |
| peek(optionalQueue_in, RubyRequest) { |
| enqueue(requestL1Network_out, RequestMsg, l1_request_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:GETX; |
| out_msg.Requestor := machineID; |
| DPRINTF(RubySlicc, "%s\n", machineID); |
| |
| out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, |
| l2_select_low_bit, l2_select_num_bits, intToID(0))); |
| |
| DPRINTF(RubySlicc, "address: %#x, destination: %s\n", |
| address, out_msg.Destination); |
| out_msg.MessageSize := MessageSizeType:Control; |
| out_msg.Prefetch := in_msg.Prefetch; |
| out_msg.AccessMode := in_msg.AccessMode; |
| } |
| } |
| } |
| |
| action(c_issueUPGRADE, "c", desc="Issue GETX") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| enqueue(requestL1Network_out, RequestMsg, l1_request_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:UPGRADE; |
| out_msg.Requestor := machineID; |
| out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, |
| l2_select_low_bit, l2_select_num_bits, intToID(0))); |
| DPRINTF(RubySlicc, "address: %#x, destination: %s\n", |
| address, out_msg.Destination); |
| out_msg.MessageSize := MessageSizeType:Control; |
| out_msg.Prefetch := in_msg.Prefetch; |
| out_msg.AccessMode := in_msg.AccessMode; |
| } |
| } |
| } |
| |
| action(d_sendDataToRequestor, "d", desc="send data to requestor") { |
| peek(requestL1Network_in, RequestMsg) { |
| enqueue(responseL1Network_out, ResponseMsg, l1_response_latency) { |
| assert(is_valid(cache_entry)); |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DATA; |
| out_msg.DataBlk := cache_entry.DataBlk; |
| out_msg.Dirty := cache_entry.Dirty; |
| out_msg.Sender := machineID; |
| out_msg.Destination.add(in_msg.Requestor); |
| out_msg.MessageSize := MessageSizeType:Response_Data; |
| } |
| } |
| } |
| |
| action(d2_sendDataToL2, "d2", desc="send data to the L2 cache because of M downgrade") { |
| enqueue(responseL1Network_out, ResponseMsg, l1_response_latency) { |
| assert(is_valid(cache_entry)); |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DATA; |
| out_msg.DataBlk := cache_entry.DataBlk; |
| out_msg.Dirty := cache_entry.Dirty; |
| out_msg.Sender := machineID; |
| out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, |
| l2_select_low_bit, l2_select_num_bits, intToID(0))); |
| out_msg.MessageSize := MessageSizeType:Response_Data; |
| } |
| } |
| |
| action(dt_sendDataToRequestor_fromTBE, "dt", desc="send data to requestor") { |
| peek(requestL1Network_in, RequestMsg) { |
| enqueue(responseL1Network_out, ResponseMsg, l1_response_latency) { |
| assert(is_valid(tbe)); |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DATA; |
| out_msg.DataBlk := tbe.DataBlk; |
| out_msg.Dirty := tbe.Dirty; |
| out_msg.Sender := machineID; |
| out_msg.Destination.add(in_msg.Requestor); |
| out_msg.MessageSize := MessageSizeType:Response_Data; |
| } |
| } |
| } |
| |
| action(d2t_sendDataToL2_fromTBE, "d2t", desc="send data to the L2 cache") { |
| enqueue(responseL1Network_out, ResponseMsg, l1_response_latency) { |
| assert(is_valid(tbe)); |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DATA; |
| out_msg.DataBlk := tbe.DataBlk; |
| out_msg.Dirty := tbe.Dirty; |
| out_msg.Sender := machineID; |
| out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, |
| l2_select_low_bit, l2_select_num_bits, intToID(0))); |
| out_msg.MessageSize := MessageSizeType:Response_Data; |
| } |
| } |
| |
| action(e_sendAckToRequestor, "e", desc="send invalidate ack to requestor (could be L2 or L1)") { |
| peek(requestL1Network_in, RequestMsg) { |
| enqueue(responseL1Network_out, ResponseMsg, l1_response_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:ACK; |
| out_msg.Sender := machineID; |
| out_msg.Destination.add(in_msg.Requestor); |
| out_msg.MessageSize := MessageSizeType:Response_Control; |
| } |
| } |
| } |
| |
| action(f_sendDataToL2, "f", desc="send data to the L2 cache") { |
| enqueue(responseL1Network_out, ResponseMsg, l1_response_latency) { |
| assert(is_valid(cache_entry)); |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DATA; |
| out_msg.DataBlk := cache_entry.DataBlk; |
| out_msg.Dirty := cache_entry.Dirty; |
| out_msg.Sender := machineID; |
| out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, |
| l2_select_low_bit, l2_select_num_bits, intToID(0))); |
| out_msg.MessageSize := MessageSizeType:Writeback_Data; |
| } |
| } |
| |
| action(ft_sendDataToL2_fromTBE, "ft", desc="send data to the L2 cache") { |
| enqueue(responseL1Network_out, ResponseMsg, l1_response_latency) { |
| assert(is_valid(tbe)); |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:DATA; |
| out_msg.DataBlk := tbe.DataBlk; |
| out_msg.Dirty := tbe.Dirty; |
| out_msg.Sender := machineID; |
| out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, |
| l2_select_low_bit, l2_select_num_bits, intToID(0))); |
| out_msg.MessageSize := MessageSizeType:Writeback_Data; |
| } |
| } |
| |
| action(fi_sendInvAck, "fi", desc="send data to the L2 cache") { |
| peek(requestL1Network_in, RequestMsg) { |
| enqueue(responseL1Network_out, ResponseMsg, l1_response_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:ACK; |
| out_msg.Sender := machineID; |
| out_msg.Destination.add(in_msg.Requestor); |
| out_msg.MessageSize := MessageSizeType:Response_Control; |
| out_msg.AckCount := 1; |
| } |
| } |
| } |
| |
| action(forward_eviction_to_cpu, "\cc", desc="sends eviction information to the processor") { |
| if (send_evictions) { |
| DPRINTF(RubySlicc, "Sending invalidation for %#x to the CPU\n", address); |
| sequencer.evictionCallback(address); |
| } |
| } |
| |
| action(g_issuePUTX, "g", desc="send data to the L2 cache") { |
| enqueue(requestL1Network_out, RequestMsg, l1_response_latency) { |
| assert(is_valid(cache_entry)); |
| out_msg.addr := address; |
| out_msg.Type := CoherenceRequestType:PUTX; |
| out_msg.DataBlk := cache_entry.DataBlk; |
| out_msg.Dirty := cache_entry.Dirty; |
| out_msg.Requestor:= machineID; |
| out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, |
| l2_select_low_bit, l2_select_num_bits, intToID(0))); |
| if (cache_entry.Dirty) { |
| out_msg.MessageSize := MessageSizeType:Writeback_Data; |
| } else { |
| out_msg.MessageSize := MessageSizeType:Writeback_Control; |
| } |
| } |
| } |
| |
| action(j_sendUnblock, "j", desc="send unblock to the L2 cache") { |
| enqueue(unblockNetwork_out, ResponseMsg, to_l2_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:UNBLOCK; |
| out_msg.Sender := machineID; |
| out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, |
| l2_select_low_bit, l2_select_num_bits, intToID(0))); |
| out_msg.MessageSize := MessageSizeType:Response_Control; |
| DPRINTF(RubySlicc, "%#x\n", address); |
| } |
| } |
| |
| action(jj_sendExclusiveUnblock, "\j", desc="send unblock to the L2 cache") { |
| enqueue(unblockNetwork_out, ResponseMsg, to_l2_latency) { |
| out_msg.addr := address; |
| out_msg.Type := CoherenceResponseType:EXCLUSIVE_UNBLOCK; |
| out_msg.Sender := machineID; |
| out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, |
| l2_select_low_bit, l2_select_num_bits, intToID(0))); |
| out_msg.MessageSize := MessageSizeType:Response_Control; |
| DPRINTF(RubySlicc, "%#x\n", address); |
| |
| } |
| } |
| |
| action(h_load_hit, "hd", |
| desc="Notify sequencer the load completed.") |
| { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| L1Dcache.setMRU(cache_entry); |
| sequencer.readCallback(address, cache_entry.DataBlk); |
| } |
| |
| action(h_ifetch_hit, "hi", desc="Notify sequencer the instruction fetch completed.") |
| { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| L1Icache.setMRU(cache_entry); |
| sequencer.readCallback(address, cache_entry.DataBlk); |
| } |
| |
| action(hx_load_hit, "hx", desc="Notify sequencer the load completed.") |
| { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| L1Icache.setMRU(address); |
| L1Dcache.setMRU(address); |
| sequencer.readCallback(address, cache_entry.DataBlk, true); |
| } |
| |
| action(hh_store_hit, "\h", desc="Notify sequencer that store completed.") |
| { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| L1Dcache.setMRU(cache_entry); |
| sequencer.writeCallback(address, cache_entry.DataBlk); |
| cache_entry.Dirty := true; |
| } |
| |
| action(hhx_store_hit, "\hx", desc="Notify sequencer that store completed.") |
| { |
| assert(is_valid(cache_entry)); |
| DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); |
| L1Icache.setMRU(address); |
| L1Dcache.setMRU(address); |
| sequencer.writeCallback(address, cache_entry.DataBlk, true); |
| cache_entry.Dirty := true; |
| } |
| |
| action(i_allocateTBE, "i", desc="Allocate TBE (isPrefetch=0, number of invalidates=0)") { |
| check_allocate(TBEs); |
| assert(is_valid(cache_entry)); |
| TBEs.allocate(address); |
| set_tbe(TBEs[address]); |
| tbe.isPrefetch := false; |
| tbe.Dirty := cache_entry.Dirty; |
| tbe.DataBlk := cache_entry.DataBlk; |
| } |
| |
| action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") { |
| mandatoryQueue_in.dequeue(clockEdge()); |
| } |
| |
| action(l_popRequestQueue, "l", |
| desc="Pop incoming request queue and profile the delay within this virtual network") { |
| Tick delay := requestL1Network_in.dequeue(clockEdge()); |
| profileMsgDelay(2, ticksToCycles(delay)); |
| } |
| |
| action(o_popIncomingResponseQueue, "o", |
| desc="Pop Incoming Response queue and profile the delay within this virtual network") { |
| Tick delay := responseL1Network_in.dequeue(clockEdge()); |
| profileMsgDelay(1, ticksToCycles(delay)); |
| } |
| |
| action(s_deallocateTBE, "s", desc="Deallocate TBE") { |
| TBEs.deallocate(address); |
| unset_tbe(); |
| } |
| |
| action(u_writeDataToL1Cache, "u", desc="Write data to cache") { |
| peek(responseL1Network_in, ResponseMsg) { |
| assert(is_valid(cache_entry)); |
| cache_entry.DataBlk := in_msg.DataBlk; |
| cache_entry.Dirty := in_msg.Dirty; |
| } |
| } |
| |
| action(q_updateAckCount, "q", desc="Update ack count") { |
| peek(responseL1Network_in, ResponseMsg) { |
| assert(is_valid(tbe)); |
| tbe.pendingAcks := tbe.pendingAcks - in_msg.AckCount; |
| APPEND_TRANSITION_COMMENT(in_msg.AckCount); |
| APPEND_TRANSITION_COMMENT(" p: "); |
| APPEND_TRANSITION_COMMENT(tbe.pendingAcks); |
| } |
| } |
| |
| action(ff_deallocateL1CacheBlock, "\f", desc="Deallocate L1 cache block. Sets the cache to not present, allowing a replacement in parallel with a fetch.") { |
| if (L1Dcache.isTagPresent(address)) { |
| L1Dcache.deallocate(address); |
| } else { |
| L1Icache.deallocate(address); |
| } |
| unset_cache_entry(); |
| } |
| |
| action(oo_allocateL1DCacheBlock, "\o", desc="Set L1 D-cache tag equal to tag of block B.") { |
| if (is_invalid(cache_entry)) { |
| set_cache_entry(L1Dcache.allocate(address, new Entry)); |
| } |
| } |
| |
| action(pp_allocateL1ICacheBlock, "\p", desc="Set L1 I-cache tag equal to tag of block B.") { |
| if (is_invalid(cache_entry)) { |
| set_cache_entry(L1Icache.allocate(address, new Entry)); |
| } |
| } |
| |
| action(z_stallAndWaitMandatoryQueue, "\z", desc="Stall and wait the L1 mandatory request queue") { |
| stall_and_wait(mandatoryQueue_in, address); |
| } |
| |
| action(z_stallAndWaitOptionalQueue, "\pz", desc="Stall and wait the L1 prefetch request queue") { |
| stall_and_wait(optionalQueue_in, address); |
| } |
| |
| action(kd_wakeUpDependents, "kd", desc="wake-up dependents") { |
| wakeUpBuffers(address); |
| } |
| |
| action(uu_profileInstMiss, "\uim", desc="Profile the demand miss") { |
| L1Icache.profileDemandMiss(); |
| } |
| |
| action(uu_profileInstHit, "\uih", desc="Profile the demand hit") { |
| L1Icache.profileDemandHit(); |
| } |
| |
| action(uu_profileDataMiss, "\udm", desc="Profile the demand miss") { |
| L1Dcache.profileDemandMiss(); |
| } |
| |
| action(uu_profileDataHit, "\udh", desc="Profile the demand hit") { |
| L1Dcache.profileDemandHit(); |
| } |
| |
| action(po_observeHit, "\ph", desc="Inform the prefetcher about the hit") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| if (cache_entry.isPrefetch) { |
| prefetcher.observePfHit(in_msg.LineAddress); |
| cache_entry.isPrefetch := false; |
| } |
| } |
| } |
| |
| action(po_observeMiss, "\po", desc="Inform the prefetcher about the miss") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| if (enable_prefetch) { |
| prefetcher.observeMiss(in_msg.LineAddress, in_msg.Type); |
| } |
| } |
| } |
| |
| action(ppm_observePfMiss, "\ppm", |
| desc="Inform the prefetcher about the partial miss") { |
| peek(mandatoryQueue_in, RubyRequest) { |
| prefetcher.observePfMiss(in_msg.LineAddress); |
| } |
| } |
| |
| action(pq_popPrefetchQueue, "\pq", desc="Pop the prefetch request queue") { |
| optionalQueue_in.dequeue(clockEdge()); |
| } |
| |
| action(mp_markPrefetched, "mp", desc="Set the isPrefetch flag") { |
| assert(is_valid(cache_entry)); |
| cache_entry.isPrefetch := true; |
| } |
| |
| |
| //***************************************************** |
| // TRANSITIONS |
| //***************************************************** |
| |
| // Transitions for Load/Store/Replacement/WriteBack from transient states |
| transition({IS, IM, IS_I, M_I, SM, SINK_WB_ACK}, {Load, Ifetch, Store, L1_Replacement}) { |
| z_stallAndWaitMandatoryQueue; |
| } |
| |
| transition({PF_IS, PF_IS_I}, {Store, L1_Replacement}) { |
| z_stallAndWaitMandatoryQueue; |
| } |
| |
| transition({PF_IM, PF_SM}, {Load, Ifetch, L1_Replacement}) { |
| z_stallAndWaitMandatoryQueue; |
| } |
| |
| transition({IS, IM, IS_I, M_I, SM, SINK_WB_ACK, PF_IS, PF_IS_I, PF_IM, PF_SM}, PF_L1_Replacement) { |
| z_stallAndWaitOptionalQueue; |
| } |
| |
| // Transitions from Idle |
| transition({NP,I}, {L1_Replacement, PF_L1_Replacement}) { |
| ff_deallocateL1CacheBlock; |
| } |
| |
| transition({S,E,M,IS,IM,SM,IS_I,PF_IS_I,M_I,SINK_WB_ACK,PF_IS,PF_IM}, |
| {PF_Load, PF_Store, PF_Ifetch}) { |
| pq_popPrefetchQueue; |
| } |
| |
| transition({NP,I}, Load, IS) { |
| oo_allocateL1DCacheBlock; |
| i_allocateTBE; |
| a_issueGETS; |
| uu_profileDataMiss; |
| po_observeMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition({NP,I}, PF_Load, PF_IS) { |
| oo_allocateL1DCacheBlock; |
| i_allocateTBE; |
| pa_issuePfGETS; |
| pq_popPrefetchQueue; |
| } |
| |
| transition(PF_IS, Load, IS) { |
| uu_profileDataMiss; |
| ppm_observePfMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition(PF_IS_I, Load, IS_I) { |
| uu_profileDataMiss; |
| ppm_observePfMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition(PF_IS_I, Ifetch, IS_I) { |
| uu_profileInstMiss; |
| ppm_observePfMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition({NP,I}, Ifetch, IS) { |
| pp_allocateL1ICacheBlock; |
| i_allocateTBE; |
| ai_issueGETINSTR; |
| uu_profileInstMiss; |
| po_observeMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition({NP,I}, PF_Ifetch, PF_IS) { |
| pp_allocateL1ICacheBlock; |
| i_allocateTBE; |
| pai_issuePfGETINSTR; |
| pq_popPrefetchQueue; |
| } |
| |
| // We proactively assume that the prefetch is in to |
| // the instruction cache |
| transition(PF_IS, Ifetch, IS) { |
| uu_profileDataMiss; |
| ppm_observePfMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition({NP,I}, Store, IM) { |
| oo_allocateL1DCacheBlock; |
| i_allocateTBE; |
| b_issueGETX; |
| uu_profileDataMiss; |
| po_observeMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition({NP,I}, PF_Store, PF_IM) { |
| oo_allocateL1DCacheBlock; |
| i_allocateTBE; |
| pb_issuePfGETX; |
| pq_popPrefetchQueue; |
| } |
| |
| transition(PF_IM, Store, IM) { |
| uu_profileDataMiss; |
| ppm_observePfMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition(PF_SM, Store, SM) { |
| uu_profileDataMiss; |
| ppm_observePfMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition({NP, I}, Inv) { |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| // Transitions from Shared |
| transition({S,E,M}, Load) { |
| h_load_hit; |
| uu_profileDataHit; |
| po_observeHit; |
| k_popMandatoryQueue; |
| } |
| |
| transition({S,E,M}, Ifetch) { |
| h_ifetch_hit; |
| uu_profileInstHit; |
| po_observeHit; |
| k_popMandatoryQueue; |
| } |
| |
| transition(S, Store, SM) { |
| i_allocateTBE; |
| c_issueUPGRADE; |
| uu_profileDataMiss; |
| k_popMandatoryQueue; |
| } |
| |
| transition(S, {L1_Replacement, PF_L1_Replacement}, I) { |
| forward_eviction_to_cpu; |
| ff_deallocateL1CacheBlock; |
| } |
| |
| transition(S, Inv, I) { |
| forward_eviction_to_cpu; |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| // Transitions from Exclusive |
| |
| transition({E,M}, Store, M) { |
| hh_store_hit; |
| uu_profileDataHit; |
| po_observeHit; |
| k_popMandatoryQueue; |
| } |
| |
| transition(E, {L1_Replacement, PF_L1_Replacement}, M_I) { |
| // silent E replacement?? |
| forward_eviction_to_cpu; |
| i_allocateTBE; |
| g_issuePUTX; // send data, but hold in case forwarded request |
| ff_deallocateL1CacheBlock; |
| } |
| |
| transition(E, Inv, I) { |
| // don't send data |
| forward_eviction_to_cpu; |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| transition(E, Fwd_GETX, I) { |
| forward_eviction_to_cpu; |
| d_sendDataToRequestor; |
| l_popRequestQueue; |
| } |
| |
| transition(E, {Fwd_GETS, Fwd_GET_INSTR}, S) { |
| d_sendDataToRequestor; |
| d2_sendDataToL2; |
| l_popRequestQueue; |
| } |
| |
| // Transitions from Modified |
| |
| transition(M, {L1_Replacement, PF_L1_Replacement}, M_I) { |
| forward_eviction_to_cpu; |
| i_allocateTBE; |
| g_issuePUTX; // send data, but hold in case forwarded request |
| ff_deallocateL1CacheBlock; |
| } |
| |
| transition(M_I, WB_Ack, I) { |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(M, Inv, I) { |
| forward_eviction_to_cpu; |
| f_sendDataToL2; |
| l_popRequestQueue; |
| } |
| |
| transition(M_I, Inv, SINK_WB_ACK) { |
| ft_sendDataToL2_fromTBE; |
| l_popRequestQueue; |
| } |
| |
| transition(M, Fwd_GETX, I) { |
| forward_eviction_to_cpu; |
| d_sendDataToRequestor; |
| l_popRequestQueue; |
| } |
| |
| transition(M, {Fwd_GETS, Fwd_GET_INSTR}, S) { |
| d_sendDataToRequestor; |
| d2_sendDataToL2; |
| l_popRequestQueue; |
| } |
| |
| transition(M_I, Fwd_GETX, SINK_WB_ACK) { |
| dt_sendDataToRequestor_fromTBE; |
| l_popRequestQueue; |
| } |
| |
| transition(M_I, {Fwd_GETS, Fwd_GET_INSTR}, SINK_WB_ACK) { |
| dt_sendDataToRequestor_fromTBE; |
| d2t_sendDataToL2_fromTBE; |
| l_popRequestQueue; |
| } |
| |
| // Transitions from IS |
| transition({IS, IS_I}, Inv, IS_I) { |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| transition({PF_IS, PF_IS_I}, Inv, PF_IS_I) { |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| transition(IS, Data_all_Acks, S) { |
| u_writeDataToL1Cache; |
| hx_load_hit; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(PF_IS, Data_all_Acks, S) { |
| u_writeDataToL1Cache; |
| s_deallocateTBE; |
| mp_markPrefetched; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(IS_I, Data_all_Acks, I) { |
| u_writeDataToL1Cache; |
| hx_load_hit; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(PF_IS_I, Data_all_Acks, I) { |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(IS, DataS_fromL1, S) { |
| u_writeDataToL1Cache; |
| j_sendUnblock; |
| hx_load_hit; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(PF_IS, DataS_fromL1, S) { |
| u_writeDataToL1Cache; |
| j_sendUnblock; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(IS_I, DataS_fromL1, I) { |
| u_writeDataToL1Cache; |
| j_sendUnblock; |
| hx_load_hit; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(PF_IS_I, DataS_fromL1, I) { |
| j_sendUnblock; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| // directory is blocked when sending exclusive data |
| transition(IS_I, Data_Exclusive, E) { |
| u_writeDataToL1Cache; |
| hx_load_hit; |
| jj_sendExclusiveUnblock; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| // directory is blocked when sending exclusive data |
| transition(PF_IS_I, Data_Exclusive, E) { |
| u_writeDataToL1Cache; |
| jj_sendExclusiveUnblock; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(IS, Data_Exclusive, E) { |
| u_writeDataToL1Cache; |
| hx_load_hit; |
| jj_sendExclusiveUnblock; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(PF_IS, Data_Exclusive, E) { |
| u_writeDataToL1Cache; |
| jj_sendExclusiveUnblock; |
| s_deallocateTBE; |
| mp_markPrefetched; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| // Transitions from IM |
| transition(IM, Inv, IM) { |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| transition({PF_IM, PF_SM}, Inv, PF_IM) { |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| transition(IM, Data, SM) { |
| u_writeDataToL1Cache; |
| q_updateAckCount; |
| o_popIncomingResponseQueue; |
| } |
| |
| transition(PF_IM, Data, PF_SM) { |
| u_writeDataToL1Cache; |
| q_updateAckCount; |
| o_popIncomingResponseQueue; |
| } |
| |
| transition(IM, Data_all_Acks, M) { |
| u_writeDataToL1Cache; |
| hhx_store_hit; |
| jj_sendExclusiveUnblock; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(PF_IM, Data_all_Acks, M) { |
| u_writeDataToL1Cache; |
| jj_sendExclusiveUnblock; |
| s_deallocateTBE; |
| mp_markPrefetched; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| // transitions from SM |
| transition(SM, Inv, IM) { |
| forward_eviction_to_cpu; |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| transition({SM, IM, PF_SM, PF_IM}, Ack) { |
| q_updateAckCount; |
| o_popIncomingResponseQueue; |
| } |
| |
| transition(SM, Ack_all, M) { |
| jj_sendExclusiveUnblock; |
| hhx_store_hit; |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(PF_SM, Ack_all, M) { |
| jj_sendExclusiveUnblock; |
| s_deallocateTBE; |
| mp_markPrefetched; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| |
| transition(SINK_WB_ACK, Inv){ |
| fi_sendInvAck; |
| l_popRequestQueue; |
| } |
| |
| transition(SINK_WB_ACK, WB_Ack, I){ |
| s_deallocateTBE; |
| o_popIncomingResponseQueue; |
| kd_wakeUpDependents; |
| } |
| } |