blob: 9ffab0964561f4a2ab135788b6338dc311da1fbb [file] [log] [blame]
/*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/sparc/tlb.hh"
#include <cstring>
#include "arch/sparc/asi.hh"
#include "arch/sparc/faults.hh"
#include "arch/sparc/interrupts.hh"
#include "arch/sparc/mmu.hh"
#include "arch/sparc/regs/misc.hh"
#include "arch/sparc/types.hh"
#include "base/bitfield.hh"
#include "base/compiler.hh"
#include "base/trace.hh"
#include "cpu/base.hh"
#include "cpu/thread_context.hh"
#include "debug/IPR.hh"
#include "debug/TLB.hh"
#include "mem/packet_access.hh"
#include "mem/page_table.hh"
#include "mem/request.hh"
#include "sim/full_system.hh"
#include "sim/process.hh"
#include "sim/system.hh"
namespace gem5
{
/* @todo remove some of the magic constants. -- ali
* */
namespace SparcISA {
TLB::TLB(const Params &p)
: BaseTLB(p), size(p.size), usedEntries(0), lastReplaced(0),
cacheState(0), cacheValid(false)
{
// To make this work you'll have to change the hypervisor and OS
if (size > 64)
fatal("SPARC T1 TLB registers don't support more than 64 TLB entries");
tlb = new TlbEntry[size];
std::memset((void *)tlb, 0, sizeof(TlbEntry) * size);
for (int x = 0; x < size; x++)
freeList.push_back(&tlb[x]);
c0_tsb_ps0 = 0;
c0_tsb_ps1 = 0;
c0_config = 0;
cx_tsb_ps0 = 0;
cx_tsb_ps1 = 0;
cx_config = 0;
sfsr = 0;
tag_access = 0;
sfar = 0;
cacheEntry[0] = NULL;
cacheEntry[1] = NULL;
}
void
TLB::clearUsedBits()
{
MapIter i;
for (i = lookupTable.begin(); i != lookupTable.end(); i++) {
TlbEntry *t = i->second;
if (!t->pte.locked()) {
t->used = false;
usedEntries--;
}
}
}
void
TLB::insert(Addr va, int partition_id, int context_id, bool real,
const PageTableEntry& PTE, int entry)
{
MapIter i;
TlbEntry *new_entry = NULL;
int x;
cacheValid = false;
va &= ~(PTE.size()-1);
DPRINTF(TLB,
"TLB: Inserting Entry; va=%#x pa=%#x pid=%d cid=%d r=%d entryid=%d\n",
va, PTE.paddr(), partition_id, context_id, (int)real, entry);
// Demap any entry that conflicts
for (x = 0; x < size; x++) {
if (tlb[x].range.real == real &&
tlb[x].range.partitionId == partition_id &&
tlb[x].range.va < va + PTE.size() - 1 &&
tlb[x].range.va + tlb[x].range.size >= va &&
(real || tlb[x].range.contextId == context_id ))
{
if (tlb[x].valid) {
freeList.push_front(&tlb[x]);
DPRINTF(TLB, "TLB: Conflicting entry %#X , deleting it\n", x);
tlb[x].valid = false;
if (tlb[x].used) {
tlb[x].used = false;
usedEntries--;
}
lookupTable.erase(tlb[x].range);
}
}
}
if (entry != -1) {
assert(entry < size && entry >= 0);
new_entry = &tlb[entry];
} else {
if (!freeList.empty()) {
new_entry = freeList.front();
} else {
x = lastReplaced;
do {
++x;
if (x == size)
x = 0;
if (x == lastReplaced)
goto insertAllLocked;
} while (tlb[x].pte.locked());
lastReplaced = x;
new_entry = &tlb[x];
}
}
insertAllLocked:
// Update the last ently if their all locked
if (!new_entry) {
new_entry = &tlb[size-1];
}
freeList.remove(new_entry);
if (new_entry->valid && new_entry->used)
usedEntries--;
if (new_entry->valid)
lookupTable.erase(new_entry->range);
assert(PTE.valid());
new_entry->range.va = va;
new_entry->range.size = PTE.size() - 1;
new_entry->range.partitionId = partition_id;
new_entry->range.contextId = context_id;
new_entry->range.real = real;
new_entry->pte = PTE;
new_entry->used = true;;
new_entry->valid = true;
usedEntries++;
i = lookupTable.insert(new_entry->range, new_entry);
assert(i != lookupTable.end());
// If all entries have their used bit set, clear it on them all,
// but the one we just inserted
if (usedEntries == size) {
clearUsedBits();
new_entry->used = true;
usedEntries++;
}
}
TlbEntry*
TLB::lookup(Addr va, int partition_id, bool real, int context_id,
bool update_used)
{
MapIter i;
TlbRange tr;
TlbEntry *t;
DPRINTF(TLB, "TLB: Looking up entry va=%#x pid=%d cid=%d r=%d\n",
va, partition_id, context_id, real);
// Assemble full address structure
tr.va = va;
tr.size = 1;
tr.contextId = context_id;
tr.partitionId = partition_id;
tr.real = real;
// Try to find the entry
i = lookupTable.find(tr);
if (i == lookupTable.end()) {
DPRINTF(TLB, "TLB: No valid entry found\n");
return NULL;
}
// Mark the entries used bit and clear other used bits in needed
t = i->second;
DPRINTF(TLB, "TLB: Valid entry found pa: %#x size: %#x\n", t->pte.paddr(),
t->pte.size());
// Update the used bits only if this is a real access (not a fake
// one from virttophys()
if (!t->used && update_used) {
t->used = true;
usedEntries++;
if (usedEntries == size) {
clearUsedBits();
t->used = true;
usedEntries++;
}
}
return t;
}
void
TLB::dumpAll()
{
MapIter i;
for (int x = 0; x < size; x++) {
if (tlb[x].valid) {
DPRINTFN("%4d: %#2x:%#2x %c %#4x %#8x %#8x %#16x\n",
x, tlb[x].range.partitionId, tlb[x].range.contextId,
tlb[x].range.real ? 'R' : ' ', tlb[x].range.size,
tlb[x].range.va, tlb[x].pte.paddr(), tlb[x].pte());
}
}
}
void
TLB::demapPage(Addr va, int partition_id, bool real, int context_id)
{
TlbRange tr;
MapIter i;
DPRINTF(IPR, "TLB: Demapping Page va=%#x pid=%#d cid=%d r=%d\n",
va, partition_id, context_id, real);
cacheValid = false;
// Assemble full address structure
tr.va = va;
tr.size = 1;
tr.contextId = context_id;
tr.partitionId = partition_id;
tr.real = real;
// Demap any entry that conflicts
i = lookupTable.find(tr);
if (i != lookupTable.end()) {
DPRINTF(IPR, "TLB: Demapped page\n");
i->second->valid = false;
if (i->second->used) {
i->second->used = false;
usedEntries--;
}
freeList.push_front(i->second);
lookupTable.erase(i);
}
}
void
TLB::demapContext(int partition_id, int context_id)
{
DPRINTF(IPR, "TLB: Demapping Context pid=%#d cid=%d\n",
partition_id, context_id);
cacheValid = false;
for (int x = 0; x < size; x++) {
if (tlb[x].range.contextId == context_id &&
tlb[x].range.partitionId == partition_id) {
if (tlb[x].valid) {
freeList.push_front(&tlb[x]);
}
tlb[x].valid = false;
if (tlb[x].used) {
tlb[x].used = false;
usedEntries--;
}
lookupTable.erase(tlb[x].range);
}
}
}
void
TLB::demapAll(int partition_id)
{
DPRINTF(TLB, "TLB: Demapping All pid=%#d\n", partition_id);
cacheValid = false;
for (int x = 0; x < size; x++) {
if (tlb[x].valid && !tlb[x].pte.locked() &&
tlb[x].range.partitionId == partition_id) {
freeList.push_front(&tlb[x]);
tlb[x].valid = false;
if (tlb[x].used) {
tlb[x].used = false;
usedEntries--;
}
lookupTable.erase(tlb[x].range);
}
}
}
void
TLB::flushAll()
{
cacheValid = false;
lookupTable.clear();
for (int x = 0; x < size; x++) {
if (tlb[x].valid)
freeList.push_back(&tlb[x]);
tlb[x].valid = false;
tlb[x].used = false;
}
usedEntries = 0;
}
uint64_t
TLB::TteRead(int entry)
{
if (entry >= size)
panic("entry: %d\n", entry);
assert(entry < size);
if (tlb[entry].valid)
return tlb[entry].pte();
else
return (uint64_t)-1ll;
}
uint64_t
TLB::TagRead(int entry)
{
assert(entry < size);
uint64_t tag;
if (!tlb[entry].valid)
return (uint64_t)-1ll;
tag = tlb[entry].range.contextId;
tag |= tlb[entry].range.va;
tag |= (uint64_t)tlb[entry].range.partitionId << 61;
tag |= tlb[entry].range.real ? 1ULL << 60 : 0;
tag |= (uint64_t)~tlb[entry].pte._size() << 56;
return tag;
}
bool
TLB::validVirtualAddress(Addr va, bool am)
{
if (am)
return true;
if (va >= StartVAddrHole && va <= EndVAddrHole)
return false;
return true;
}
void
TLB::writeSfsr(bool write, ContextType ct, bool se, FaultTypes ft, int asi)
{
if (sfsr & 0x1)
sfsr = 0x3;
else
sfsr = 1;
if (write)
sfsr |= 1 << 2;
sfsr |= ct << 4;
if (se)
sfsr |= 1 << 6;
sfsr |= ft << 7;
sfsr |= asi << 16;
}
void
TLB::writeTagAccess(Addr va, int context)
{
DPRINTF(TLB, "TLB: Writing Tag Access: va: %#X ctx: %#X value: %#X\n",
va, context, mbits(va, 63,13) | mbits(context,12,0));
tag_access = mbits(va, 63,13) | mbits(context,12,0);
}
void
TLB::writeSfsr(Addr a, bool write, ContextType ct,
bool se, FaultTypes ft, int asi)
{
DPRINTF(TLB, "TLB: Fault: A=%#x w=%d ct=%d ft=%d asi=%d\n",
a, (int)write, ct, ft, asi);
TLB::writeSfsr(write, ct, se, ft, asi);
sfar = a;
}
Fault
TLB::translateInst(const RequestPtr &req, ThreadContext *tc)
{
uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA);
Addr vaddr = req->getVaddr();
TlbEntry *e;
assert(req->getArchFlags() == ASI_IMPLICIT);
DPRINTF(TLB, "TLB: ITB Request to translate va=%#x size=%d\n",
vaddr, req->getSize());
// Be fast if we can!
if (cacheValid && cacheState == tlbdata) {
if (cacheEntry[0]) {
if (cacheEntry[0]->range.va < vaddr + sizeof(MachInst) &&
cacheEntry[0]->range.va + cacheEntry[0]->range.size >= vaddr) {
req->setPaddr(cacheEntry[0]->pte.translate(vaddr));
return NoFault;
}
} else {
req->setPaddr(vaddr & PAddrImplMask);
return NoFault;
}
}
bool hpriv = bits(tlbdata,0,0);
bool red = bits(tlbdata,1,1);
bool priv = bits(tlbdata,2,2);
bool addr_mask = bits(tlbdata,3,3);
bool lsu_im = bits(tlbdata,4,4);
int part_id = bits(tlbdata,15,8);
int tl = bits(tlbdata,18,16);
int pri_context = bits(tlbdata,47,32);
int context;
ContextType ct;
int asi;
bool real = false;
DPRINTF(TLB, "TLB: priv:%d hpriv:%d red:%d lsuim:%d part_id: %#X\n",
priv, hpriv, red, lsu_im, part_id);
if (tl > 0) {
asi = ASI_N;
ct = Nucleus;
context = 0;
} else {
asi = ASI_P;
ct = Primary;
context = pri_context;
}
if ( hpriv || red ) {
cacheValid = true;
cacheState = tlbdata;
cacheEntry[0] = NULL;
req->setPaddr(vaddr & PAddrImplMask);
return NoFault;
}
// If the access is unaligned trap
if (vaddr & 0x3) {
writeSfsr(false, ct, false, OtherFault, asi);
return std::make_shared<MemAddressNotAligned>();
}
if (addr_mask)
vaddr = vaddr & VAddrAMask;
if (!validVirtualAddress(vaddr, addr_mask)) {
writeSfsr(false, ct, false, VaOutOfRange, asi);
return std::make_shared<InstructionAccessException>();
}
if (!lsu_im) {
e = lookup(vaddr, part_id, true);
real = true;
context = 0;
} else {
e = lookup(vaddr, part_id, false, context);
}
if (e == NULL || !e->valid) {
writeTagAccess(vaddr, context);
if (real) {
return std::make_shared<InstructionRealTranslationMiss>();
} else {
if (FullSystem)
return std::make_shared<FastInstructionAccessMMUMiss>();
else
return std::make_shared<FastInstructionAccessMMUMiss>(
req->getVaddr());
}
}
// were not priviledged accesing priv page
if (!priv && e->pte.priv()) {
writeTagAccess(vaddr, context);
writeSfsr(false, ct, false, PrivViolation, asi);
return std::make_shared<InstructionAccessException>();
}
// cache translation date for next translation
cacheValid = true;
cacheState = tlbdata;
cacheEntry[0] = e;
req->setPaddr(e->pte.translate(vaddr));
DPRINTF(TLB, "TLB: %#X -> %#X\n", vaddr, req->getPaddr());
return NoFault;
}
Fault
TLB::translateData(const RequestPtr &req, ThreadContext *tc, bool write)
{
/*
* @todo this could really use some profiling and fixing to make
* it faster!
*/
uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA);
Addr vaddr = req->getVaddr();
Addr size = req->getSize();
ASI asi;
asi = (ASI)req->getArchFlags();
bool implicit = false;
bool hpriv = bits(tlbdata,0,0);
bool unaligned = vaddr & (size - 1);
DPRINTF(TLB, "TLB: DTB Request to translate va=%#x size=%d asi=%#x\n",
vaddr, size, asi);
if (lookupTable.size() != 64 - freeList.size())
panic("Lookup table size: %d tlb size: %d\n", lookupTable.size(),
freeList.size());
if (asi == ASI_IMPLICIT)
implicit = true;
// Only use the fast path here if there doesn't need to be an unaligned
// trap later
if (!unaligned) {
if (hpriv && implicit) {
req->setPaddr(vaddr & PAddrImplMask);
return NoFault;
}
// Be fast if we can!
if (cacheValid && cacheState == tlbdata) {
if (cacheEntry[0]) {
TlbEntry *ce = cacheEntry[0];
Addr ce_va = ce->range.va;
if (cacheAsi[0] == asi &&
ce_va < vaddr + size && ce_va + ce->range.size > vaddr &&
(!write || ce->pte.writable())) {
req->setPaddr(ce->pte.translate(vaddr));
if (ce->pte.sideffect() || (ce->pte.paddr() >> 39) & 1) {
req->setFlags(
Request::UNCACHEABLE | Request::STRICT_ORDER);
}
DPRINTF(TLB, "TLB: %#X -> %#X\n", vaddr, req->getPaddr());
return NoFault;
} // if matched
} // if cache entry valid
if (cacheEntry[1]) {
TlbEntry *ce = cacheEntry[1];
Addr ce_va = ce->range.va;
if (cacheAsi[1] == asi &&
ce_va < vaddr + size && ce_va + ce->range.size > vaddr &&
(!write || ce->pte.writable())) {
req->setPaddr(ce->pte.translate(vaddr));
if (ce->pte.sideffect() || (ce->pte.paddr() >> 39) & 1) {
req->setFlags(
Request::UNCACHEABLE | Request::STRICT_ORDER);
}
DPRINTF(TLB, "TLB: %#X -> %#X\n", vaddr, req->getPaddr());
return NoFault;
} // if matched
} // if cache entry valid
}
}
bool red = bits(tlbdata,1,1);
bool priv = bits(tlbdata,2,2);
bool addr_mask = bits(tlbdata,3,3);
bool lsu_dm = bits(tlbdata,5,5);
int part_id = bits(tlbdata,15,8);
int tl = bits(tlbdata,18,16);
int pri_context = bits(tlbdata,47,32);
int sec_context = bits(tlbdata,63,48);
bool real = false;
ContextType ct = Primary;
int context = 0;
TlbEntry *e;
DPRINTF(TLB, "TLB: priv:%d hpriv:%d red:%d lsudm:%d part_id: %#X\n",
priv, hpriv, red, lsu_dm, part_id);
if (implicit) {
if (tl > 0) {
asi = ASI_N;
ct = Nucleus;
context = 0;
} else {
asi = ASI_P;
ct = Primary;
context = pri_context;
}
} else {
// We need to check for priv level/asi priv
if (!priv && !hpriv && !asiIsUnPriv(asi)) {
// It appears that context should be Nucleus in these cases?
writeSfsr(vaddr, write, Nucleus, false, IllegalAsi, asi);
return std::make_shared<PrivilegedAction>();
}
if (!hpriv && asiIsHPriv(asi)) {
writeSfsr(vaddr, write, Nucleus, false, IllegalAsi, asi);
return std::make_shared<DataAccessException>();
}
if (asiIsPrimary(asi)) {
context = pri_context;
ct = Primary;
} else if (asiIsSecondary(asi)) {
context = sec_context;
ct = Secondary;
} else if (asiIsNucleus(asi)) {
ct = Nucleus;
context = 0;
} else { // ????
ct = Primary;
context = pri_context;
}
}
if (!implicit && asi != ASI_P && asi != ASI_S) {
if (asiIsLittle(asi))
panic("Little Endian ASIs not supported\n");
if (asiIsPartialStore(asi))
panic("Partial Store ASIs not supported\n");
if (asiIsCmt(asi))
panic("Cmt ASI registers not implmented\n");
if (asiIsInterrupt(asi))
goto handleIntRegAccess;
if (asiIsMmu(asi))
goto handleMmuRegAccess;
if (asiIsScratchPad(asi))
goto handleScratchRegAccess;
if (asiIsQueue(asi))
goto handleQueueRegAccess;
if (asiIsSparcError(asi))
goto handleSparcErrorRegAccess;
if (!asiIsReal(asi) && !asiIsNucleus(asi) && !asiIsAsIfUser(asi) &&
!asiIsTwin(asi) && !asiIsBlock(asi) && !asiIsNoFault(asi))
panic("Accessing ASI %#X. Should we?\n", asi);
}
// If the asi is unaligned trap
if (unaligned) {
writeSfsr(vaddr, false, ct, false, OtherFault, asi);
return std::make_shared<MemAddressNotAligned>();
}
if (addr_mask)
vaddr = vaddr & VAddrAMask;
if (!validVirtualAddress(vaddr, addr_mask)) {
writeSfsr(vaddr, false, ct, true, VaOutOfRange, asi);
return std::make_shared<DataAccessException>();
}
if ((!lsu_dm && !hpriv && !red) || asiIsReal(asi)) {
real = true;
context = 0;
}
if (hpriv && (implicit || (!asiIsAsIfUser(asi) && !asiIsReal(asi)))) {
req->setPaddr(vaddr & PAddrImplMask);
return NoFault;
}
e = lookup(vaddr, part_id, real, context);
if (e == NULL || !e->valid) {
writeTagAccess(vaddr, context);
DPRINTF(TLB, "TLB: DTB Failed to find matching TLB entry\n");
if (real) {
return std::make_shared<DataRealTranslationMiss>();
} else {
if (FullSystem)
return std::make_shared<FastDataAccessMMUMiss>();
else
return std::make_shared<FastDataAccessMMUMiss>(
req->getVaddr());
}
}
if (!priv && e->pte.priv()) {
writeTagAccess(vaddr, context);
writeSfsr(vaddr, write, ct, e->pte.sideffect(), PrivViolation, asi);
return std::make_shared<DataAccessException>();
}
if (write && !e->pte.writable()) {
writeTagAccess(vaddr, context);
writeSfsr(vaddr, write, ct, e->pte.sideffect(), OtherFault, asi);
return std::make_shared<FastDataAccessProtection>();
}
if (e->pte.nofault() && !asiIsNoFault(asi)) {
writeTagAccess(vaddr, context);
writeSfsr(vaddr, write, ct, e->pte.sideffect(), LoadFromNfo, asi);
return std::make_shared<DataAccessException>();
}
if (e->pte.sideffect() && asiIsNoFault(asi)) {
writeTagAccess(vaddr, context);
writeSfsr(vaddr, write, ct, e->pte.sideffect(), SideEffect, asi);
return std::make_shared<DataAccessException>();
}
if (e->pte.sideffect() || (e->pte.paddr() >> 39) & 1)
req->setFlags(Request::UNCACHEABLE | Request::STRICT_ORDER);
// cache translation date for next translation
cacheState = tlbdata;
if (!cacheValid) {
cacheEntry[1] = NULL;
cacheEntry[0] = NULL;
}
if (cacheEntry[0] != e && cacheEntry[1] != e) {
cacheEntry[1] = cacheEntry[0];
cacheEntry[0] = e;
cacheAsi[1] = cacheAsi[0];
cacheAsi[0] = asi;
if (implicit)
cacheAsi[0] = (ASI)0;
}
cacheValid = true;
req->setPaddr(e->pte.translate(vaddr));
DPRINTF(TLB, "TLB: %#X -> %#X\n", vaddr, req->getPaddr());
return NoFault;
/** Normal flow ends here. */
handleIntRegAccess:
if (!hpriv) {
writeSfsr(vaddr, write, Primary, true, IllegalAsi, asi);
if (priv)
return std::make_shared<DataAccessException>();
else
return std::make_shared<PrivilegedAction>();
}
if ((asi == ASI_SWVR_UDB_INTR_W && !write) ||
(asi == ASI_SWVR_UDB_INTR_R && write)) {
writeSfsr(vaddr, write, Primary, true, IllegalAsi, asi);
return std::make_shared<DataAccessException>();
}
goto regAccessOk;
handleScratchRegAccess:
if (vaddr > 0x38 || (vaddr >= 0x20 && vaddr < 0x30 && !hpriv)) {
writeSfsr(vaddr, write, Primary, true, IllegalAsi, asi);
return std::make_shared<DataAccessException>();
}
goto regAccessOk;
handleQueueRegAccess:
if (!priv && !hpriv) {
writeSfsr(vaddr, write, Primary, true, IllegalAsi, asi);
return std::make_shared<PrivilegedAction>();
}
if ((!hpriv && vaddr & 0xF) || vaddr > 0x3f8 || vaddr < 0x3c0) {
writeSfsr(vaddr, write, Primary, true, IllegalAsi, asi);
return std::make_shared<DataAccessException>();
}
goto regAccessOk;
handleSparcErrorRegAccess:
if (!hpriv) {
writeSfsr(vaddr, write, Primary, true, IllegalAsi, asi);
if (priv)
return std::make_shared<DataAccessException>();
else
return std::make_shared<PrivilegedAction>();
}
goto regAccessOk;
regAccessOk:
handleMmuRegAccess:
DPRINTF(TLB, "TLB: DTB Translating local access\n");
req->setLocalAccessor(
[this,write](ThreadContext *tc, PacketPtr pkt) -> Cycles
{
return write ? doMmuRegWrite(tc, pkt) : doMmuRegRead(tc, pkt);
}
);
req->setPaddr(req->getVaddr());
return NoFault;
};
Fault
TLB::translateAtomic(const RequestPtr &req, ThreadContext *tc, Mode mode)
{
if (mode == Execute)
return translateInst(req, tc);
else
return translateData(req, tc, mode == Write);
}
Fault
TLB::translateFunctional(const RequestPtr &req, ThreadContext *tc, Mode mode)
{
Addr vaddr = req->getVaddr();
// Here we have many options and are really implementing something like
// a fill handler to find the address since there isn't a multilevel
// table for us to walk around.
//
// 1. We are currently hyperpriv, return the address unmodified
// 2. The mmu is off return(ra->pa)
// 3. We are currently priv, use ctx0* tsbs to find the page
// 4. We are not priv, use ctxN0* tsbs to find the page
// For all accesses we check the tlbs first since it's possible that
// long standing pages (e.g. locked kernel mappings) won't be in the tsb
uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA);
bool hpriv = bits(tlbdata,0,0);
// bool priv = bits(tlbdata,2,2);
bool addr_mask = bits(tlbdata,3,3);
bool data_real = !bits(tlbdata,5,5);
bool inst_real = !bits(tlbdata,4,4);
bool ctx_zero = bits(tlbdata,18,16) > 0;
int part_id = bits(tlbdata,15,8);
int pri_context = bits(tlbdata,47,32);
// int sec_context = bits(tlbdata,63,48);
bool real = (mode == Execute) ? inst_real : data_real;
TlbEntry* tbe;
PageTableEntry pte;
Addr tsbs[4];
Addr va_tag;
TteTag ttetag;
if (hpriv) {
req->setPaddr(vaddr);
return NoFault;
}
if (addr_mask)
vaddr = vaddr & VAddrAMask;
if (!validVirtualAddress(vaddr, addr_mask)) {
if (mode == Execute)
return std::make_shared<InstructionAccessException>();
else
return std::make_shared<DataAccessException>();
}
tbe = lookup(vaddr, part_id, real, ctx_zero ? 0 : pri_context, false);
if (tbe) {
pte = tbe->pte;
DPRINTF(TLB, "Virtual(%#x)->Physical(%#x) found in TLB\n", vaddr,
pte.translate(vaddr));
req->setPaddr(pte.translate(vaddr));
return NoFault;
}
if (!FullSystem)
return tc->getProcessPtr()->pTable->translate(req);
PortProxy mem(tc, tc->getSystemPtr()->cacheLineSize());
// We didn't find it in the tlbs, so lets look at the TSBs
GetTsbPtr(tc, vaddr, ctx_zero ? 0 : pri_context, tsbs);
va_tag = bits(vaddr, 63, 22);
for (int x = 0; x < 4; x++) {
ttetag = betoh(mem.read<uint64_t>(tsbs[x]));
if (ttetag.valid() && ttetag.va() == va_tag) {
uint64_t entry = mem.read<uint64_t>(tsbs[x]) + sizeof(uint64_t);
// I think it's sun4v at least!
pte.populate(betoh(entry), PageTableEntry::sun4v);
DPRINTF(TLB, "Virtual(%#x)->Physical(%#x) found in TTE\n",
vaddr, pte.translate(vaddr));
req->setPaddr(pte.translate(vaddr));
return NoFault;
}
}
if (mode == Execute) {
if (real)
return std::make_shared<InstructionRealTranslationMiss>();
else if (FullSystem)
return std::make_shared<FastInstructionAccessMMUMiss>();
else
return std::make_shared<FastInstructionAccessMMUMiss>(vaddr);
} else {
if (real)
return std::make_shared<DataRealTranslationMiss>();
else if (FullSystem)
return std::make_shared<FastDataAccessMMUMiss>();
else
return std::make_shared<FastDataAccessMMUMiss>(vaddr);
}
}
void
TLB::translateTiming(const RequestPtr &req, ThreadContext *tc,
Translation *translation, Mode mode)
{
assert(translation);
translation->finish(translateAtomic(req, tc, mode), req, tc, mode);
}
Fault
TLB::finalizePhysical(const RequestPtr &req,
ThreadContext *tc, Mode mode) const
{
return NoFault;
}
Cycles
TLB::doMmuRegRead(ThreadContext *tc, Packet *pkt)
{
Addr va = pkt->getAddr();
ASI asi = (ASI)pkt->req->getArchFlags();
uint64_t temp;
DPRINTF(IPR, "Memory Mapped IPR Read: asi=%#X a=%#x\n",
(uint32_t)pkt->req->getArchFlags(), pkt->getAddr());
TLB *itb = static_cast<TLB *>(tc->getMMUPtr()->itb);
switch (asi) {
case ASI_LSU_CONTROL_REG:
assert(va == 0);
pkt->setBE(tc->readMiscReg(MISCREG_MMU_LSU_CTRL));
break;
case ASI_MMU:
switch (va) {
case 0x8:
pkt->setBE(tc->readMiscReg(MISCREG_MMU_P_CONTEXT));
break;
case 0x10:
pkt->setBE(tc->readMiscReg(MISCREG_MMU_S_CONTEXT));
break;
default:
goto doMmuReadError;
}
break;
case ASI_QUEUE:
pkt->setBE(tc->readMiscReg(MISCREG_QUEUE_CPU_MONDO_HEAD +
(va >> 4) - 0x3c));
break;
case ASI_DMMU_CTXT_ZERO_TSB_BASE_PS0:
assert(va == 0);
pkt->setBE(c0_tsb_ps0);
break;
case ASI_DMMU_CTXT_ZERO_TSB_BASE_PS1:
assert(va == 0);
pkt->setBE(c0_tsb_ps1);
break;
case ASI_DMMU_CTXT_ZERO_CONFIG:
assert(va == 0);
pkt->setBE(c0_config);
break;
case ASI_IMMU_CTXT_ZERO_TSB_BASE_PS0:
assert(va == 0);
pkt->setBE(itb->c0_tsb_ps0);
break;
case ASI_IMMU_CTXT_ZERO_TSB_BASE_PS1:
assert(va == 0);
pkt->setBE(itb->c0_tsb_ps1);
break;
case ASI_IMMU_CTXT_ZERO_CONFIG:
assert(va == 0);
pkt->setBE(itb->c0_config);
break;
case ASI_DMMU_CTXT_NONZERO_TSB_BASE_PS0:
assert(va == 0);
pkt->setBE(cx_tsb_ps0);
break;
case ASI_DMMU_CTXT_NONZERO_TSB_BASE_PS1:
assert(va == 0);
pkt->setBE(cx_tsb_ps1);
break;
case ASI_DMMU_CTXT_NONZERO_CONFIG:
assert(va == 0);
pkt->setBE(cx_config);
break;
case ASI_IMMU_CTXT_NONZERO_TSB_BASE_PS0:
assert(va == 0);
pkt->setBE(itb->cx_tsb_ps0);
break;
case ASI_IMMU_CTXT_NONZERO_TSB_BASE_PS1:
assert(va == 0);
pkt->setBE(itb->cx_tsb_ps1);
break;
case ASI_IMMU_CTXT_NONZERO_CONFIG:
assert(va == 0);
pkt->setBE(itb->cx_config);
break;
case ASI_SPARC_ERROR_STATUS_REG:
pkt->setBE((uint64_t)0);
break;
case ASI_HYP_SCRATCHPAD:
case ASI_SCRATCHPAD:
pkt->setBE(tc->readMiscReg(MISCREG_SCRATCHPAD_R0 + (va >> 3)));
break;
case ASI_IMMU:
switch (va) {
case 0x0:
temp = itb->tag_access;
pkt->setBE(bits(temp,63,22) | bits(temp,12,0) << 48);
break;
case 0x18:
pkt->setBE(itb->sfsr);
break;
case 0x30:
pkt->setBE(itb->tag_access);
break;
default:
goto doMmuReadError;
}
break;
case ASI_DMMU:
switch (va) {
case 0x0:
temp = tag_access;
pkt->setBE(bits(temp,63,22) | bits(temp,12,0) << 48);
break;
case 0x18:
pkt->setBE(sfsr);
break;
case 0x20:
pkt->setBE(sfar);
break;
case 0x30:
pkt->setBE(tag_access);
break;
case 0x80:
pkt->setBE(tc->readMiscReg(MISCREG_MMU_PART_ID));
break;
default:
goto doMmuReadError;
}
break;
case ASI_DMMU_TSB_PS0_PTR_REG:
pkt->setBE(MakeTsbPtr(Ps0,
tag_access,
c0_tsb_ps0,
c0_config,
cx_tsb_ps0,
cx_config));
break;
case ASI_DMMU_TSB_PS1_PTR_REG:
pkt->setBE(MakeTsbPtr(Ps1,
tag_access,
c0_tsb_ps1,
c0_config,
cx_tsb_ps1,
cx_config));
break;
case ASI_IMMU_TSB_PS0_PTR_REG:
pkt->setBE(MakeTsbPtr(Ps0,
itb->tag_access,
itb->c0_tsb_ps0,
itb->c0_config,
itb->cx_tsb_ps0,
itb->cx_config));
break;
case ASI_IMMU_TSB_PS1_PTR_REG:
pkt->setBE(MakeTsbPtr(Ps1,
itb->tag_access,
itb->c0_tsb_ps1,
itb->c0_config,
itb->cx_tsb_ps1,
itb->cx_config));
break;
case ASI_SWVR_INTR_RECEIVE:
{
SparcISA::Interrupts * interrupts =
dynamic_cast<SparcISA::Interrupts *>(
tc->getCpuPtr()->getInterruptController(0));
pkt->setBE(interrupts->get_vec(IT_INT_VEC));
}
break;
case ASI_SWVR_UDB_INTR_R:
{
SparcISA::Interrupts * interrupts =
dynamic_cast<SparcISA::Interrupts *>(
tc->getCpuPtr()->getInterruptController(0));
temp = findMsbSet(interrupts->get_vec(IT_INT_VEC));
tc->getCpuPtr()->clearInterrupt(0, IT_INT_VEC, temp);
pkt->setBE(temp);
}
break;
default:
doMmuReadError:
panic("need to impl DTB::doMmuRegRead() got asi=%#x, va=%#x\n",
(uint32_t)asi, va);
}
pkt->makeAtomicResponse();
return Cycles(1);
}
Cycles
TLB::doMmuRegWrite(ThreadContext *tc, Packet *pkt)
{
uint64_t data = pkt->getBE<uint64_t>();
Addr va = pkt->getAddr();
ASI asi = (ASI)pkt->req->getArchFlags();
Addr ta_insert;
Addr va_insert;
Addr ct_insert;
int part_insert;
int entry_insert = -1;
bool real_insert;
bool ignore;
int part_id;
int ctx_id;
PageTableEntry pte;
DPRINTF(IPR, "Memory Mapped IPR Write: asi=%#X a=%#x d=%#X\n",
(uint32_t)asi, va, data);
TLB *itb = static_cast<TLB *>(tc->getMMUPtr()->itb);
switch (asi) {
case ASI_LSU_CONTROL_REG:
assert(va == 0);
tc->setMiscReg(MISCREG_MMU_LSU_CTRL, data);
break;
case ASI_MMU:
switch (va) {
case 0x8:
tc->setMiscReg(MISCREG_MMU_P_CONTEXT, data);
break;
case 0x10:
tc->setMiscReg(MISCREG_MMU_S_CONTEXT, data);
break;
default:
goto doMmuWriteError;
}
break;
case ASI_QUEUE:
assert(mbits(data,13,6) == data);
tc->setMiscReg(MISCREG_QUEUE_CPU_MONDO_HEAD +
(va >> 4) - 0x3c, data);
break;
case ASI_DMMU_CTXT_ZERO_TSB_BASE_PS0:
assert(va == 0);
c0_tsb_ps0 = data;
break;
case ASI_DMMU_CTXT_ZERO_TSB_BASE_PS1:
assert(va == 0);
c0_tsb_ps1 = data;
break;
case ASI_DMMU_CTXT_ZERO_CONFIG:
assert(va == 0);
c0_config = data;
break;
case ASI_IMMU_CTXT_ZERO_TSB_BASE_PS0:
assert(va == 0);
itb->c0_tsb_ps0 = data;
break;
case ASI_IMMU_CTXT_ZERO_TSB_BASE_PS1:
assert(va == 0);
itb->c0_tsb_ps1 = data;
break;
case ASI_IMMU_CTXT_ZERO_CONFIG:
assert(va == 0);
itb->c0_config = data;
break;
case ASI_DMMU_CTXT_NONZERO_TSB_BASE_PS0:
assert(va == 0);
cx_tsb_ps0 = data;
break;
case ASI_DMMU_CTXT_NONZERO_TSB_BASE_PS1:
assert(va == 0);
cx_tsb_ps1 = data;
break;
case ASI_DMMU_CTXT_NONZERO_CONFIG:
assert(va == 0);
cx_config = data;
break;
case ASI_IMMU_CTXT_NONZERO_TSB_BASE_PS0:
assert(va == 0);
itb->cx_tsb_ps0 = data;
break;
case ASI_IMMU_CTXT_NONZERO_TSB_BASE_PS1:
assert(va == 0);
itb->cx_tsb_ps1 = data;
break;
case ASI_IMMU_CTXT_NONZERO_CONFIG:
assert(va == 0);
itb->cx_config = data;
break;
case ASI_SPARC_ERROR_EN_REG:
case ASI_SPARC_ERROR_STATUS_REG:
inform("Ignoring write to SPARC ERROR regsiter\n");
break;
case ASI_HYP_SCRATCHPAD:
case ASI_SCRATCHPAD:
tc->setMiscReg(MISCREG_SCRATCHPAD_R0 + (va >> 3), data);
break;
case ASI_IMMU:
switch (va) {
case 0x18:
itb->sfsr = data;
break;
case 0x30:
itb->tag_access = szext<60>(data);
break;
default:
goto doMmuWriteError;
}
break;
case ASI_ITLB_DATA_ACCESS_REG:
entry_insert = bits(va, 8,3);
GEM5_FALLTHROUGH;
case ASI_ITLB_DATA_IN_REG:
assert(entry_insert != -1 || mbits(va,10,9) == va);
ta_insert = itb->tag_access;
va_insert = mbits(ta_insert, 63,13);
ct_insert = mbits(ta_insert, 12,0);
part_insert = tc->readMiscReg(MISCREG_MMU_PART_ID);
real_insert = bits(va, 9,9);
pte.populate(data, bits(va,10,10) ? PageTableEntry::sun4v :
PageTableEntry::sun4u);
itb->insert(va_insert, part_insert, ct_insert, real_insert,
pte, entry_insert);
break;
case ASI_DTLB_DATA_ACCESS_REG:
entry_insert = bits(va, 8,3);
GEM5_FALLTHROUGH;
case ASI_DTLB_DATA_IN_REG:
assert(entry_insert != -1 || mbits(va,10,9) == va);
ta_insert = tag_access;
va_insert = mbits(ta_insert, 63,13);
ct_insert = mbits(ta_insert, 12,0);
part_insert = tc->readMiscReg(MISCREG_MMU_PART_ID);
real_insert = bits(va, 9,9);
pte.populate(data, bits(va,10,10) ? PageTableEntry::sun4v :
PageTableEntry::sun4u);
insert(va_insert, part_insert, ct_insert, real_insert, pte,
entry_insert);
break;
case ASI_IMMU_DEMAP:
ignore = false;
ctx_id = -1;
part_id = tc->readMiscReg(MISCREG_MMU_PART_ID);
switch (bits(va,5,4)) {
case 0:
ctx_id = tc->readMiscReg(MISCREG_MMU_P_CONTEXT);
break;
case 1:
ignore = true;
break;
case 3:
ctx_id = 0;
break;
default:
ignore = true;
}
switch (bits(va,7,6)) {
case 0: // demap page
if (!ignore)
itb->demapPage(mbits(va,63,13), part_id, bits(va,9,9), ctx_id);
break;
case 1: // demap context
if (!ignore)
itb->demapContext(part_id, ctx_id);
break;
case 2:
itb->demapAll(part_id);
break;
default:
panic("Invalid type for IMMU demap\n");
}
break;
case ASI_DMMU:
switch (va) {
case 0x18:
sfsr = data;
break;
case 0x30:
tag_access = szext<60>(data);
break;
case 0x80:
tc->setMiscReg(MISCREG_MMU_PART_ID, data);
break;
default:
goto doMmuWriteError;
}
break;
case ASI_DMMU_DEMAP:
ignore = false;
ctx_id = -1;
part_id = tc->readMiscReg(MISCREG_MMU_PART_ID);
switch (bits(va,5,4)) {
case 0:
ctx_id = tc->readMiscReg(MISCREG_MMU_P_CONTEXT);
break;
case 1:
ctx_id = tc->readMiscReg(MISCREG_MMU_S_CONTEXT);
break;
case 3:
ctx_id = 0;
break;
default:
ignore = true;
}
switch (bits(va,7,6)) {
case 0: // demap page
if (!ignore)
demapPage(mbits(va,63,13), part_id, bits(va,9,9), ctx_id);
break;
case 1: // demap context
if (!ignore)
demapContext(part_id, ctx_id);
break;
case 2:
demapAll(part_id);
break;
default:
panic("Invalid type for IMMU demap\n");
}
break;
case ASI_SWVR_INTR_RECEIVE:
{
int msb;
// clear all the interrupts that aren't set in the write
SparcISA::Interrupts * interrupts =
dynamic_cast<SparcISA::Interrupts *>(
tc->getCpuPtr()->getInterruptController(0));
while (interrupts->get_vec(IT_INT_VEC) & data) {
msb = findMsbSet(interrupts->get_vec(IT_INT_VEC) & data);
tc->getCpuPtr()->clearInterrupt(0, IT_INT_VEC, msb);
}
}
break;
case ASI_SWVR_UDB_INTR_W:
tc->getSystemPtr()->threads[bits(data,12,8)]->
getCpuPtr()->postInterrupt(0, bits(data, 5, 0), 0);
break;
default:
doMmuWriteError:
panic("need to impl DTB::doMmuRegWrite() got asi=%#x, va=%#x d=%#x\n",
(uint32_t)pkt->req->getArchFlags(), pkt->getAddr(), data);
}
pkt->makeAtomicResponse();
return Cycles(1);
}
void
TLB::GetTsbPtr(ThreadContext *tc, Addr addr, int ctx, Addr *ptrs)
{
uint64_t tag_access = mbits(addr,63,13) | mbits(ctx,12,0);
TLB *itb = static_cast<TLB *>(tc->getMMUPtr()->itb);
ptrs[0] = MakeTsbPtr(Ps0, tag_access,
c0_tsb_ps0,
c0_config,
cx_tsb_ps0,
cx_config);
ptrs[1] = MakeTsbPtr(Ps1, tag_access,
c0_tsb_ps1,
c0_config,
cx_tsb_ps1,
cx_config);
ptrs[2] = MakeTsbPtr(Ps0, tag_access,
itb->c0_tsb_ps0,
itb->c0_config,
itb->cx_tsb_ps0,
itb->cx_config);
ptrs[3] = MakeTsbPtr(Ps1, tag_access,
itb->c0_tsb_ps1,
itb->c0_config,
itb->cx_tsb_ps1,
itb->cx_config);
}
uint64_t
TLB::MakeTsbPtr(TsbPageSize ps, uint64_t tag_access, uint64_t c0_tsb,
uint64_t c0_config, uint64_t cX_tsb, uint64_t cX_config)
{
uint64_t tsb;
uint64_t config;
if (bits(tag_access, 12,0) == 0) {
tsb = c0_tsb;
config = c0_config;
} else {
tsb = cX_tsb;
config = cX_config;
}
uint64_t ptr = mbits(tsb,63,13);
bool split = bits(tsb,12,12);
int tsb_size = bits(tsb,3,0);
int page_size = (ps == Ps0) ? bits(config, 2,0) : bits(config,10,8);
if (ps == Ps1 && split)
ptr |= 1ULL << (13 + tsb_size);
ptr |= (tag_access >> (9 + page_size * 3)) & mask(12+tsb_size, 4);
return ptr;
}
void
TLB::serialize(CheckpointOut &cp) const
{
SERIALIZE_SCALAR(size);
SERIALIZE_SCALAR(usedEntries);
SERIALIZE_SCALAR(lastReplaced);
// convert the pointer based free list into an index based one
std::vector<int> free_list;
for (const TlbEntry *entry : freeList)
free_list.push_back(entry - tlb);
SERIALIZE_CONTAINER(free_list);
SERIALIZE_SCALAR(c0_tsb_ps0);
SERIALIZE_SCALAR(c0_tsb_ps1);
SERIALIZE_SCALAR(c0_config);
SERIALIZE_SCALAR(cx_tsb_ps0);
SERIALIZE_SCALAR(cx_tsb_ps1);
SERIALIZE_SCALAR(cx_config);
SERIALIZE_SCALAR(sfsr);
SERIALIZE_SCALAR(tag_access);
SERIALIZE_SCALAR(sfar);
for (int x = 0; x < size; x++) {
ScopedCheckpointSection sec(cp, csprintf("PTE%d", x));
tlb[x].serialize(cp);
}
}
void
TLB::unserialize(CheckpointIn &cp)
{
int oldSize;
paramIn(cp, "size", oldSize);
if (oldSize != size)
panic("Don't support unserializing different sized TLBs\n");
UNSERIALIZE_SCALAR(usedEntries);
UNSERIALIZE_SCALAR(lastReplaced);
std::vector<int> free_list;
UNSERIALIZE_CONTAINER(free_list);
freeList.clear();
for (int idx : free_list)
freeList.push_back(&tlb[idx]);
UNSERIALIZE_SCALAR(c0_tsb_ps0);
UNSERIALIZE_SCALAR(c0_tsb_ps1);
UNSERIALIZE_SCALAR(c0_config);
UNSERIALIZE_SCALAR(cx_tsb_ps0);
UNSERIALIZE_SCALAR(cx_tsb_ps1);
UNSERIALIZE_SCALAR(cx_config);
UNSERIALIZE_SCALAR(sfsr);
UNSERIALIZE_SCALAR(tag_access);
lookupTable.clear();
for (int x = 0; x < size; x++) {
ScopedCheckpointSection sec(cp, csprintf("PTE%d", x));
tlb[x].unserialize(cp);
if (tlb[x].valid)
lookupTable.insert(tlb[x].range, &tlb[x]);
}
UNSERIALIZE_SCALAR(sfar);
}
} // namespace SparcISA
} // namespace gem5