| /* Copyright (c) 2012 Massachusetts Institute of Technology |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| |
| #include "model/timing_graph/ElectricalTimingTree.h" |
| |
| #include "model/ElectricalModel.h" |
| #include "model/timing_graph/ElectricalTimingNode.h" |
| #include "model/timing_graph/ElectricalDriver.h" |
| #include "model/timing_graph/ElectricalNet.h" |
| |
| namespace DSENT |
| { |
| // Initialize the next visited number to be one above the initial number |
| // used by ElectricalTimingNode |
| int ElectricalTimingTree::msTreeNum = ElectricalTimingNode::TIMING_NODE_INIT_VISITED_NUM + 1; |
| |
| ElectricalTimingTree::ElectricalTimingTree(const String& instance_name_, ElectricalModel* model_) |
| : m_instance_name_(instance_name_), m_model_(model_) |
| { |
| //setTreeNum(1); |
| } |
| |
| ElectricalTimingTree::~ElectricalTimingTree() |
| { |
| |
| } |
| |
| const String& ElectricalTimingTree::getInstanceName() const |
| { |
| return m_instance_name_; |
| } |
| |
| bool ElectricalTimingTree::performTimingOpt(ElectricalTimingNode* node_, double required_delay_) |
| { |
| // Extract the critical path from all timing paths branching out from the starting node |
| double delay = performCritPathExtract(node_); |
| double min_delay = delay; |
| |
| unsigned int iteration = 0; |
| unsigned int crit_path_iteration = 0; |
| unsigned int max_iterations = 8000; //TODO: make this not hard-coded |
| unsigned int max_iterations_single_crit_path = 400; //TODO: make this not hard-coded |
| |
| Log::printLine(getInstanceName() + " -> Beginning Incremental Timing Optimization"); |
| |
| // Size up the nodes if timing is not met |
| while(required_delay_ < delay) |
| { |
| Log::printLine(getInstanceName() + " -> Timing Optimization Iteration " + (String) iteration + |
| ": Required delay = " + (String) required_delay_ + ", Delay = " + |
| (String) delay + ", Slack = " + (String) (required_delay_ - delay)); |
| |
| ElectricalTimingNode* node_for_timing_opt = NULL; |
| // Go into the less expensive critical path delay calculation |
| // While the timing is not met for this critical path |
| while (required_delay_ < delay) |
| { |
| // Find the node to optimize timing for, it would return a node to size up |
| node_for_timing_opt = findNodeForTimingOpt(node_); |
| // Give up if there are no appropriate nodes to size up or |
| // max number of iterations has been reached |
| // Size up the chosen node if there is an appropriate node to size up |
| if(node_for_timing_opt == NULL || iteration > max_iterations || crit_path_iteration > max_iterations_single_crit_path) |
| break; |
| else |
| node_for_timing_opt->increaseDrivingStrength(); |
| |
| // Re-evaluate the delay of the critical path |
| delay = calculateCritPathDelay(node_); |
| iteration++; |
| crit_path_iteration++; |
| Log::printLine(getInstanceName() + " -> Critical Path Slack: " + (String) (required_delay_ - delay)); |
| } |
| // Give up if there are no appropriate nodes to size up or |
| // max number of iterations has been reached |
| if (node_for_timing_opt == NULL || iteration > max_iterations || crit_path_iteration > max_iterations_single_crit_path) |
| break; |
| |
| crit_path_iteration = 0; |
| // Once the critical path timing is met, extract a new critical path from |
| // all timing paths branching out from the starting node |
| delay = performCritPathExtract(node_); |
| min_delay = (min_delay > delay) ? delay : min_delay; |
| } |
| Log::printLine(getInstanceName() + " -> Timing Optimization Ended after Iteration: " + (String) iteration + |
| ": Required delay = " + (String) required_delay_ + ", Delay = " + |
| (String) delay + ", Slack = " + (String) (required_delay_ - delay)); |
| |
| min_delay = (min_delay > delay) ? delay : min_delay; |
| |
| // Check if the timing meets the required delay |
| if(required_delay_ < delay) |
| { |
| // Timing not met. Return false and print out a warning message |
| const String& warning_msg = "[Warning] " + getInstanceName() + " -> Timing not met: Required delay = " + |
| (String) required_delay_ + ", Minimum Delay = " + (String) min_delay + ", Slack = " + |
| (String) (required_delay_ - delay); |
| Log::printLine(std::cerr, warning_msg); |
| return false; |
| } |
| return true; |
| } |
| //------------------------------------------------------------------------- |
| // Extract Crit Path Delay (and marks the crit path) |
| //------------------------------------------------------------------------- |
| double ElectricalTimingTree::performCritPathExtract(ElectricalTimingNode* node_) |
| { |
| setTreeNum(getTreeNum() + 1); |
| return extractCritPathDelay(node_); |
| } |
| |
| double ElectricalTimingTree::extractCritPathDelay(ElectricalTimingNode* node_) |
| { |
| //TODO: Replace with a stack data structure instead of recursion to prevent |
| //stack overflow problems with long chains of logic (4000+ nodes) and/or better |
| //performance. Nvm, stack data structure version seems to run much slower |
| |
| // If the node has already been visited, return the delay! |
| if (node_->getVisitedNum() == getTreeNum()) |
| return node_->getDelayLeft(); |
| // If the node has been marked as a false path, return 0.0 |
| else if (node_->getFalsePath()) |
| return 0.0; |
| |
| // Set the new parity for this node |
| node_->setVisitedNum(getTreeNum()); |
| node_->setDelayLeft(0.0); |
| |
| double max_delay = 0; |
| double current_delay = 0; |
| |
| // Traverse downstream nodes to calculate the delay through each downstream path |
| vector<ElectricalTimingNode*>* d_nodes = node_->getDownstreamNodes(); |
| for (unsigned int i = 0; i < d_nodes->size(); ++i) |
| { |
| current_delay = extractCritPathDelay(d_nodes->at(i)); |
| // Update the critical path |
| if (current_delay > max_delay) |
| { |
| node_->setCritPath(i); |
| max_delay = current_delay; |
| } |
| } |
| // Calculate the delay left from this node |
| double delay_left = node_->calculateDelay() + max_delay; |
| node_->setDelayLeft(delay_left); |
| |
| return delay_left; |
| |
| } |
| |
| double ElectricalTimingTree::calculateCritPathDelay(ElectricalTimingNode* node_) const |
| { |
| // Simplest case where theres nothing to optimize |
| if (node_ == NULL) |
| return 0.0; |
| |
| double delay = 0.0; |
| int crit_path = 0; |
| |
| // Traverse the critical path and sum up delays |
| while (crit_path >= 0) |
| { |
| delay += node_->calculateDelay(); |
| //Move on to the next node in the critical path |
| crit_path = node_->getCritPath(); |
| if (crit_path >= 0) |
| node_ = node_->getDownstreamNodes()->at(crit_path); |
| } |
| return delay; |
| } |
| //------------------------------------------------------------------------- |
| |
| //------------------------------------------------------------------------- |
| // Find Worst Slew Helpers |
| //------------------------------------------------------------------------- |
| ElectricalTimingNode* ElectricalTimingTree::findNodeForTimingOpt(ElectricalTimingNode* node_) const |
| { |
| // Simplest case where theres nothing to optimize |
| if (node_ == NULL) |
| return NULL; |
| |
| double max_transition_ratio = -10.0; |
| double current_transition_ratio = 0.0; |
| double previous_transition = 1e3 * node_->getTotalDownstreamCap(); |
| double current_transition = 0.0; |
| ElectricalTimingNode* worst = NULL; |
| int crit_path = 0; |
| |
| // Find the node with the highest max_transition_ratio to return |
| while (crit_path >= 0) |
| { |
| current_transition = node_->calculateDelay(); |
| |
| //If the node is not yet at max size, it is a potential choice for size up |
| if (!node_->hasMaxDrivingStrength()) |
| { |
| current_transition_ratio = current_transition / previous_transition; |
| |
| if (current_transition_ratio > max_transition_ratio) |
| { |
| worst = node_; |
| max_transition_ratio = current_transition_ratio; |
| } |
| } |
| |
| if (node_->isDriver()) |
| previous_transition = 0.0; |
| previous_transition += current_transition; |
| |
| //Move on to the next node in the critical path |
| crit_path = node_->getCritPath(); |
| |
| if (crit_path >= 0) |
| node_ = node_->getDownstreamNodes()->at(crit_path); |
| } |
| |
| return worst; |
| } |
| //------------------------------------------------------------------------- |
| |
| double ElectricalTimingTree::calculateNodeTransition(ElectricalTimingNode* node_) const |
| { |
| return node_->calculateTransition(); |
| } |
| |
| ElectricalTimingTree::ElectricalTimingTree(const ElectricalTimingTree& /* graph_ */) |
| { |
| // Disabled |
| } |
| |
| ElectricalModel* ElectricalTimingTree::getModel() |
| { |
| return m_model_; |
| } |
| |
| void ElectricalTimingTree::setTreeNum(int tree_num_) |
| { |
| msTreeNum = tree_num_; |
| return; |
| } |
| |
| int ElectricalTimingTree::getTreeNum() |
| { |
| return msTreeNum; |
| } |
| |
| } // namespace DSENT |
| |