| /* |
| * Copyright (c) 2017,2019-2022 ARM Limited |
| * All rights reserved. |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "mem/ruby/slicc_interface/AbstractController.hh" |
| |
| #include "debug/RubyQueue.hh" |
| #include "mem/ruby/network/Network.hh" |
| #include "mem/ruby/protocol/MemoryMsg.hh" |
| #include "mem/ruby/system/RubySystem.hh" |
| #include "mem/ruby/system/Sequencer.hh" |
| #include "sim/system.hh" |
| |
| namespace gem5 |
| { |
| |
| namespace ruby |
| { |
| |
| AbstractController::AbstractController(const Params &p) |
| : ClockedObject(p), Consumer(this), m_version(p.version), |
| m_clusterID(p.cluster_id), |
| m_id(p.system->getRequestorId(this)), m_is_blocking(false), |
| m_number_of_TBEs(p.number_of_TBEs), |
| m_transitions_per_cycle(p.transitions_per_cycle), |
| m_buffer_size(p.buffer_size), m_recycle_latency(p.recycle_latency), |
| m_mandatory_queue_latency(p.mandatory_queue_latency), |
| m_waiting_mem_retry(false), |
| memoryPort(csprintf("%s.memory", name()), this), |
| addrRanges(p.addr_ranges.begin(), p.addr_ranges.end()), |
| stats(this) |
| { |
| if (m_version == 0) { |
| // Combine the statistics from all controllers |
| // of this particular type. |
| statistics::registerDumpCallback([this]() { collateStats(); }); |
| } |
| } |
| |
| void |
| AbstractController::init() |
| { |
| stats.delayHistogram.init(10); |
| uint32_t size = Network::getNumberOfVirtualNetworks(); |
| for (uint32_t i = 0; i < size; i++) { |
| stats.delayVCHistogram.push_back(new statistics::Histogram(this)); |
| stats.delayVCHistogram[i]->init(10); |
| } |
| |
| if (getMemReqQueue()) { |
| getMemReqQueue()->setConsumer(this); |
| } |
| |
| // Initialize the addr->downstream machine mappings. Multiple machines |
| // in downstream_destinations can have the same address range if they have |
| // different types. If this is the case, mapAddressToDownstreamMachine |
| // needs to specify the machine type |
| downstreamDestinations.resize(); |
| for (auto abs_cntrl : params().downstream_destinations) { |
| MachineID mid = abs_cntrl->getMachineID(); |
| const AddrRangeList &ranges = abs_cntrl->getAddrRanges(); |
| for (const auto &addr_range : ranges) { |
| auto i = downstreamAddrMap.find(mid.getType()); |
| if ((i != downstreamAddrMap.end()) && |
| (i->second.intersects(addr_range) != i->second.end())) { |
| fatal("%s: %s mapped to multiple machines of the same type\n", |
| name(), addr_range.to_string()); |
| } |
| downstreamAddrMap[mid.getType()].insert(addr_range, mid); |
| } |
| downstreamDestinations.add(mid); |
| } |
| // Initialize the addr->upstream machine list. |
| // We do not need to map address -> upstream machine, |
| // so we don't examine the address ranges |
| upstreamDestinations.resize(); |
| for (auto abs_cntrl : params().upstream_destinations) { |
| upstreamDestinations.add(abs_cntrl->getMachineID()); |
| } |
| } |
| |
| void |
| AbstractController::resetStats() |
| { |
| stats.delayHistogram.reset(); |
| uint32_t size = Network::getNumberOfVirtualNetworks(); |
| for (uint32_t i = 0; i < size; i++) { |
| stats.delayVCHistogram[i]->reset(); |
| } |
| } |
| |
| void |
| AbstractController::regStats() |
| { |
| ClockedObject::regStats(); |
| } |
| |
| void |
| AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay) |
| { |
| assert(virtualNetwork < stats.delayVCHistogram.size()); |
| stats.delayHistogram.sample(delay); |
| stats.delayVCHistogram[virtualNetwork]->sample(delay); |
| } |
| |
| void |
| AbstractController::stallBuffer(MessageBuffer* buf, Addr addr) |
| { |
| if (m_waiting_buffers.count(addr) == 0) { |
| MsgVecType* msgVec = new MsgVecType; |
| msgVec->resize(m_in_ports, NULL); |
| m_waiting_buffers[addr] = msgVec; |
| } |
| DPRINTF(RubyQueue, "stalling %s port %d addr %#x\n", buf, m_cur_in_port, |
| addr); |
| assert(m_in_ports > m_cur_in_port); |
| (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf; |
| } |
| |
| void |
| AbstractController::wakeUpBuffer(MessageBuffer* buf, Addr addr) |
| { |
| auto iter = m_waiting_buffers.find(addr); |
| if (iter != m_waiting_buffers.end()) { |
| bool has_other_msgs = false; |
| MsgVecType* msgVec = iter->second; |
| for (unsigned int port = 0; port < msgVec->size(); ++port) { |
| if ((*msgVec)[port] == buf) { |
| buf->reanalyzeMessages(addr, clockEdge()); |
| (*msgVec)[port] = NULL; |
| } else if ((*msgVec)[port] != NULL) { |
| has_other_msgs = true; |
| } |
| } |
| if (!has_other_msgs) { |
| delete msgVec; |
| m_waiting_buffers.erase(iter); |
| } |
| } |
| } |
| |
| void |
| AbstractController::wakeUpBuffers(Addr addr) |
| { |
| if (m_waiting_buffers.count(addr) > 0) { |
| // |
| // Wake up all possible lower rank (i.e. lower priority) buffers that could |
| // be waiting on this message. |
| // |
| for (int in_port_rank = m_cur_in_port - 1; |
| in_port_rank >= 0; |
| in_port_rank--) { |
| if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) { |
| (*(m_waiting_buffers[addr]))[in_port_rank]-> |
| reanalyzeMessages(addr, clockEdge()); |
| } |
| } |
| delete m_waiting_buffers[addr]; |
| m_waiting_buffers.erase(addr); |
| } |
| } |
| |
| void |
| AbstractController::wakeUpAllBuffers(Addr addr) |
| { |
| if (m_waiting_buffers.count(addr) > 0) { |
| // |
| // Wake up all possible buffers that could be waiting on this message. |
| // |
| for (int in_port_rank = m_in_ports - 1; |
| in_port_rank >= 0; |
| in_port_rank--) { |
| if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) { |
| (*(m_waiting_buffers[addr]))[in_port_rank]-> |
| reanalyzeMessages(addr, clockEdge()); |
| } |
| } |
| delete m_waiting_buffers[addr]; |
| m_waiting_buffers.erase(addr); |
| } |
| } |
| |
| void |
| AbstractController::wakeUpAllBuffers() |
| { |
| // |
| // Wake up all possible buffers that could be waiting on any message. |
| // |
| |
| std::vector<MsgVecType*> wokeUpMsgVecs; |
| MsgBufType wokeUpMsgBufs; |
| |
| if (m_waiting_buffers.size() > 0) { |
| for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin(); |
| buf_iter != m_waiting_buffers.end(); |
| ++buf_iter) { |
| for (MsgVecType::iterator vec_iter = buf_iter->second->begin(); |
| vec_iter != buf_iter->second->end(); |
| ++vec_iter) { |
| // |
| // Make sure the MessageBuffer has not already be reanalyzed |
| // |
| if (*vec_iter != NULL && |
| (wokeUpMsgBufs.count(*vec_iter) == 0)) { |
| (*vec_iter)->reanalyzeAllMessages(clockEdge()); |
| wokeUpMsgBufs.insert(*vec_iter); |
| } |
| } |
| wokeUpMsgVecs.push_back(buf_iter->second); |
| } |
| |
| for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin(); |
| wb_iter != wokeUpMsgVecs.end(); |
| ++wb_iter) { |
| delete (*wb_iter); |
| } |
| |
| m_waiting_buffers.clear(); |
| } |
| } |
| |
| bool |
| AbstractController::serviceMemoryQueue() |
| { |
| auto mem_queue = getMemReqQueue(); |
| assert(mem_queue); |
| if (m_waiting_mem_retry || !mem_queue->isReady(clockEdge())) { |
| return false; |
| } |
| |
| const MemoryMsg *mem_msg = (const MemoryMsg*)mem_queue->peek(); |
| unsigned int req_size = RubySystem::getBlockSizeBytes(); |
| if (mem_msg->m_Len > 0) { |
| req_size = mem_msg->m_Len; |
| } |
| |
| RequestPtr req |
| = std::make_shared<Request>(mem_msg->m_addr, req_size, 0, m_id); |
| PacketPtr pkt; |
| if (mem_msg->getType() == MemoryRequestType_MEMORY_WB) { |
| pkt = Packet::createWrite(req); |
| pkt->allocate(); |
| pkt->setData(mem_msg->m_DataBlk.getData(getOffset(mem_msg->m_addr), |
| req_size)); |
| } else if (mem_msg->getType() == MemoryRequestType_MEMORY_READ) { |
| pkt = Packet::createRead(req); |
| uint8_t *newData = new uint8_t[req_size]; |
| pkt->dataDynamic(newData); |
| } else { |
| panic("Unknown memory request type (%s) for addr %p", |
| MemoryRequestType_to_string(mem_msg->getType()), |
| mem_msg->m_addr); |
| } |
| |
| SenderState *s = new SenderState(mem_msg->m_Sender); |
| pkt->pushSenderState(s); |
| |
| if (RubySystem::getWarmupEnabled()) { |
| // Use functional rather than timing accesses during warmup |
| mem_queue->dequeue(clockEdge()); |
| memoryPort.sendFunctional(pkt); |
| // Since the queue was popped the controller may be able |
| // to make more progress. Make sure it wakes up |
| scheduleEvent(Cycles(1)); |
| recvTimingResp(pkt); |
| } else if (memoryPort.sendTimingReq(pkt)) { |
| mem_queue->dequeue(clockEdge()); |
| // Since the queue was popped the controller may be able |
| // to make more progress. Make sure it wakes up |
| scheduleEvent(Cycles(1)); |
| } else { |
| scheduleEvent(Cycles(1)); |
| m_waiting_mem_retry = true; |
| delete pkt; |
| delete s; |
| } |
| |
| return true; |
| } |
| |
| void |
| AbstractController::blockOnQueue(Addr addr, MessageBuffer* port) |
| { |
| m_is_blocking = true; |
| m_block_map[addr] = port; |
| } |
| |
| bool |
| AbstractController::isBlocked(Addr addr) const |
| { |
| return m_is_blocking && (m_block_map.find(addr) != m_block_map.end()); |
| } |
| |
| void |
| AbstractController::unblock(Addr addr) |
| { |
| m_block_map.erase(addr); |
| if (m_block_map.size() == 0) { |
| m_is_blocking = false; |
| } |
| } |
| |
| bool |
| AbstractController::isBlocked(Addr addr) |
| { |
| return (m_block_map.count(addr) > 0); |
| } |
| |
| Port & |
| AbstractController::getPort(const std::string &if_name, PortID idx) |
| { |
| return memoryPort; |
| } |
| |
| void |
| AbstractController::functionalMemoryRead(PacketPtr pkt) |
| { |
| // read from mem. req. queue if write data is pending there |
| MessageBuffer *req_queue = getMemReqQueue(); |
| if (!req_queue || !req_queue->functionalRead(pkt)) |
| memoryPort.sendFunctional(pkt); |
| } |
| |
| int |
| AbstractController::functionalMemoryWrite(PacketPtr pkt) |
| { |
| int num_functional_writes = 0; |
| |
| // Update memory itself. |
| memoryPort.sendFunctional(pkt); |
| return num_functional_writes + 1; |
| } |
| |
| void |
| AbstractController::recvTimingResp(PacketPtr pkt) |
| { |
| assert(getMemRespQueue()); |
| assert(pkt->isResponse()); |
| |
| std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge()); |
| (*msg).m_addr = pkt->getAddr(); |
| (*msg).m_Sender = m_machineID; |
| |
| SenderState *s = dynamic_cast<SenderState *>(pkt->senderState); |
| (*msg).m_OriginalRequestorMachId = s->id; |
| delete s; |
| |
| if (pkt->isRead()) { |
| (*msg).m_Type = MemoryRequestType_MEMORY_READ; |
| (*msg).m_MessageSize = MessageSizeType_Response_Data; |
| |
| // Copy data from the packet |
| (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0, |
| RubySystem::getBlockSizeBytes()); |
| } else if (pkt->isWrite()) { |
| (*msg).m_Type = MemoryRequestType_MEMORY_WB; |
| (*msg).m_MessageSize = MessageSizeType_Writeback_Control; |
| } else { |
| panic("Incorrect packet type received from memory controller!"); |
| } |
| |
| getMemRespQueue()->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1))); |
| delete pkt; |
| } |
| |
| Tick |
| AbstractController::recvAtomic(PacketPtr pkt) |
| { |
| return ticksToCycles(memoryPort.sendAtomic(pkt)); |
| } |
| |
| MachineID |
| AbstractController::mapAddressToMachine(Addr addr, MachineType mtype) const |
| { |
| NodeID node = m_net_ptr->addressToNodeID(addr, mtype); |
| MachineID mach = {mtype, node}; |
| return mach; |
| } |
| |
| MachineID |
| AbstractController::mapAddressToDownstreamMachine(Addr addr, MachineType mtype) |
| const |
| { |
| if (mtype == MachineType_NUM) { |
| // map to the first match |
| for (const auto &i : downstreamAddrMap) { |
| const auto mapping = i.second.contains(addr); |
| if (mapping != i.second.end()) |
| return mapping->second; |
| } |
| } |
| else { |
| const auto i = downstreamAddrMap.find(mtype); |
| if (i != downstreamAddrMap.end()) { |
| const auto mapping = i->second.contains(addr); |
| if (mapping != i->second.end()) |
| return mapping->second; |
| } |
| } |
| fatal("%s: couldn't find mapping for address %x mtype=%s\n", |
| name(), addr, mtype); |
| } |
| |
| |
| bool |
| AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt) |
| { |
| controller->recvTimingResp(pkt); |
| return true; |
| } |
| |
| void |
| AbstractController::MemoryPort::recvReqRetry() |
| { |
| controller->m_waiting_mem_retry = false; |
| controller->serviceMemoryQueue(); |
| } |
| |
| AbstractController::MemoryPort::MemoryPort(const std::string &_name, |
| AbstractController *_controller, |
| PortID id) |
| : RequestPort(_name, id), controller(_controller) |
| { |
| } |
| |
| AbstractController:: |
| ControllerStats::ControllerStats(statistics::Group *parent) |
| : statistics::Group(parent), |
| ADD_STAT(fullyBusyCycles, |
| "cycles for which number of transistions == max transitions"), |
| ADD_STAT(delayHistogram, "delay_histogram") |
| { |
| fullyBusyCycles |
| .flags(statistics::nozero); |
| delayHistogram |
| .flags(statistics::nozero); |
| } |
| |
| } // namespace ruby |
| } // namespace gem5 |