blob: 97f0fa383dcdc452c96b44b650ed950b0ba2bebf [file] [log] [blame]
/*
* Copyright (c) 2015-2017 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/arm/kvm/gic.hh"
#include <linux/kvm.h>
#include "arch/arm/kvm/base_cpu.hh"
#include "debug/GIC.hh"
#include "debug/Interrupt.hh"
#include "params/MuxingKvmGic.hh"
KvmKernelGicV2::KvmKernelGicV2(KvmVM &_vm, Addr cpu_addr, Addr dist_addr,
unsigned it_lines)
: cpuRange(RangeSize(cpu_addr, KVM_VGIC_V2_CPU_SIZE)),
distRange(RangeSize(dist_addr, KVM_VGIC_V2_DIST_SIZE)),
vm(_vm),
kdev(vm.createDevice(KVM_DEV_TYPE_ARM_VGIC_V2))
{
// Tell the VM that we will emulate the GIC in the kernel. This
// disables IRQ and FIQ handling in the KVM CPU model.
vm.enableKernelIRQChip();
kdev.setAttr<uint64_t>(
KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V2_ADDR_TYPE_DIST, dist_addr);
kdev.setAttr<uint64_t>(
KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V2_ADDR_TYPE_CPU, cpu_addr);
kdev.setAttr<uint32_t>(KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0, it_lines);
}
KvmKernelGicV2::~KvmKernelGicV2()
{
}
void
KvmKernelGicV2::setSPI(unsigned spi)
{
setIntState(KVM_ARM_IRQ_TYPE_SPI, 0, spi, true);
}
void
KvmKernelGicV2::clearSPI(unsigned spi)
{
setIntState(KVM_ARM_IRQ_TYPE_SPI, 0, spi, false);
}
void
KvmKernelGicV2::setPPI(unsigned vcpu, unsigned ppi)
{
setIntState(KVM_ARM_IRQ_TYPE_PPI, vcpu, ppi, true);
}
void
KvmKernelGicV2::clearPPI(unsigned vcpu, unsigned ppi)
{
setIntState(KVM_ARM_IRQ_TYPE_PPI, vcpu, ppi, false);
}
void
KvmKernelGicV2::setIntState(unsigned type, unsigned vcpu, unsigned irq,
bool high)
{
assert(type <= KVM_ARM_IRQ_TYPE_MASK);
assert(vcpu <= KVM_ARM_IRQ_VCPU_MASK);
assert(irq <= KVM_ARM_IRQ_NUM_MASK);
const uint32_t line(
(type << KVM_ARM_IRQ_TYPE_SHIFT) |
(vcpu << KVM_ARM_IRQ_VCPU_SHIFT) |
(irq << KVM_ARM_IRQ_NUM_SHIFT));
vm.setIRQLine(line, high);
}
uint32_t
KvmKernelGicV2::getGicReg(unsigned group, unsigned vcpu, unsigned offset)
{
uint64_t reg;
assert(vcpu <= KVM_ARM_IRQ_VCPU_MASK);
const uint64_t attr(
((uint64_t)vcpu << KVM_DEV_ARM_VGIC_CPUID_SHIFT) |
(offset << KVM_DEV_ARM_VGIC_OFFSET_SHIFT));
kdev.getAttrPtr(group, attr, &reg);
return (uint32_t) reg;
}
void
KvmKernelGicV2::setGicReg(unsigned group, unsigned vcpu, unsigned offset,
unsigned value)
{
uint64_t reg = value;
assert(vcpu <= KVM_ARM_IRQ_VCPU_MASK);
const uint64_t attr(
((uint64_t)vcpu << KVM_DEV_ARM_VGIC_CPUID_SHIFT) |
(offset << KVM_DEV_ARM_VGIC_OFFSET_SHIFT));
kdev.setAttrPtr(group, attr, &reg);
}
uint32_t
KvmKernelGicV2::readDistributor(ContextID ctx, Addr daddr)
{
auto vcpu = vm.contextIdToVCpuId(ctx);
return getGicReg(KVM_DEV_ARM_VGIC_GRP_DIST_REGS, vcpu, daddr);
}
uint32_t
KvmKernelGicV2::readCpu(ContextID ctx, Addr daddr)
{
auto vcpu = vm.contextIdToVCpuId(ctx);
return getGicReg(KVM_DEV_ARM_VGIC_GRP_CPU_REGS, vcpu, daddr);
}
void
KvmKernelGicV2::writeDistributor(ContextID ctx, Addr daddr, uint32_t data)
{
auto vcpu = vm.contextIdToVCpuId(ctx);
setGicReg(KVM_DEV_ARM_VGIC_GRP_DIST_REGS, vcpu, daddr, data);
}
void
KvmKernelGicV2::writeCpu(ContextID ctx, Addr daddr, uint32_t data)
{
auto vcpu = vm.contextIdToVCpuId(ctx);
setGicReg(KVM_DEV_ARM_VGIC_GRP_CPU_REGS, vcpu, daddr, data);
}
MuxingKvmGic::MuxingKvmGic(const MuxingKvmGicParams *p)
: GicV2(p),
system(*p->system),
kernelGic(nullptr),
usingKvm(false)
{
if (auto vm = system.getKvmVM()) {
kernelGic = new KvmKernelGicV2(*vm, p->cpu_addr, p->dist_addr,
p->it_lines);
}
}
MuxingKvmGic::~MuxingKvmGic()
{
}
void
MuxingKvmGic::startup()
{
GicV2::startup();
usingKvm = (kernelGic != nullptr) && system.validKvmEnvironment();
if (usingKvm)
fromGicV2ToKvm();
}
DrainState
MuxingKvmGic::drain()
{
if (usingKvm)
fromKvmToGicV2();
return GicV2::drain();
}
void
MuxingKvmGic::drainResume()
{
GicV2::drainResume();
bool use_kvm = (kernelGic != nullptr) && system.validKvmEnvironment();
if (use_kvm != usingKvm) {
// Should only occur due to CPU switches
if (use_kvm) // from simulation to KVM emulation
fromGicV2ToKvm();
// otherwise, drain() already sync'd the state back to the GicV2
usingKvm = use_kvm;
}
}
Tick
MuxingKvmGic::read(PacketPtr pkt)
{
if (!usingKvm)
return GicV2::read(pkt);
panic("MuxingKvmGic: PIO from gem5 is currently unsupported\n");
}
Tick
MuxingKvmGic::write(PacketPtr pkt)
{
if (!usingKvm)
return GicV2::write(pkt);
panic("MuxingKvmGic: PIO from gem5 is currently unsupported\n");
}
void
MuxingKvmGic::sendInt(uint32_t num)
{
if (!usingKvm)
return GicV2::sendInt(num);
DPRINTF(Interrupt, "Set SPI %d\n", num);
kernelGic->setSPI(num);
}
void
MuxingKvmGic::clearInt(uint32_t num)
{
if (!usingKvm)
return GicV2::clearInt(num);
DPRINTF(Interrupt, "Clear SPI %d\n", num);
kernelGic->clearSPI(num);
}
void
MuxingKvmGic::sendPPInt(uint32_t num, uint32_t cpu)
{
if (!usingKvm)
return GicV2::sendPPInt(num, cpu);
DPRINTF(Interrupt, "Set PPI %d:%d\n", cpu, num);
kernelGic->setPPI(cpu, num);
}
void
MuxingKvmGic::clearPPInt(uint32_t num, uint32_t cpu)
{
if (!usingKvm)
return GicV2::clearPPInt(num, cpu);
DPRINTF(Interrupt, "Clear PPI %d:%d\n", cpu, num);
kernelGic->clearPPI(cpu, num);
}
void
MuxingKvmGic::updateIntState(int hint)
{
// During Kvm->GicV2 state transfer, writes to the GicV2 will call
// updateIntState() which can post an interrupt. Since we're only
// using the GicV2 model for holding state in this circumstance, we
// short-circuit this behavior, as the GicV2 is not actually active.
if (!usingKvm)
return GicV2::updateIntState(hint);
}
void
MuxingKvmGic::copyDistRegister(BaseGicRegisters* from, BaseGicRegisters* to,
ContextID ctx, Addr daddr)
{
auto val = from->readDistributor(ctx, daddr);
DPRINTF(GIC, "copy dist 0x%x 0x%08x\n", daddr, val);
to->writeDistributor(ctx, daddr, val);
}
void
MuxingKvmGic::copyCpuRegister(BaseGicRegisters* from, BaseGicRegisters* to,
ContextID ctx, Addr daddr)
{
auto val = from->readCpu(ctx, daddr);
DPRINTF(GIC, "copy cpu 0x%x 0x%08x\n", daddr, val);
to->writeCpu(ctx, daddr, val);
}
void
MuxingKvmGic::copyBankedDistRange(BaseGicRegisters* from, BaseGicRegisters* to,
Addr daddr, size_t size)
{
for (int ctx = 0; ctx < system.threads.size(); ++ctx)
for (auto a = daddr; a < daddr + size; a += 4)
copyDistRegister(from, to, ctx, a);
}
void
MuxingKvmGic::clearBankedDistRange(BaseGicRegisters* to,
Addr daddr, size_t size)
{
for (int ctx = 0; ctx < system.threads.size(); ++ctx)
for (auto a = daddr; a < daddr + size; a += 4)
to->writeDistributor(ctx, a, 0xFFFFFFFF);
}
void
MuxingKvmGic::copyDistRange(BaseGicRegisters* from, BaseGicRegisters* to,
Addr daddr, size_t size)
{
for (auto a = daddr; a < daddr + size; a += 4)
copyDistRegister(from, to, 0, a);
}
void
MuxingKvmGic::clearDistRange(BaseGicRegisters* to,
Addr daddr, size_t size)
{
for (auto a = daddr; a < daddr + size; a += 4)
to->writeDistributor(0, a, 0xFFFFFFFF);
}
void
MuxingKvmGic::copyGicState(BaseGicRegisters* from, BaseGicRegisters* to)
{
Addr set, clear;
size_t size;
/// CPU state (GICC_*)
// Copy CPU Interface Control Register (CTLR),
// Interrupt Priority Mask Register (PMR), and
// Binary Point Register (BPR)
for (int ctx = 0; ctx < system.threads.size(); ++ctx) {
copyCpuRegister(from, to, ctx, GICC_CTLR);
copyCpuRegister(from, to, ctx, GICC_PMR);
copyCpuRegister(from, to, ctx, GICC_BPR);
}
/// Distributor state (GICD_*)
// Copy Distributor Control Register (CTLR)
copyDistRegister(from, to, 0, GICD_CTLR);
// Copy interrupt-enabled statuses (I[CS]ENABLERn; R0 is per-CPU banked)
set = GicV2::GICD_ISENABLER.start();
clear = GicV2::GICD_ICENABLER.start();
size = GicV2::itLines / 8;
clearBankedDistRange(to, clear, 4);
copyBankedDistRange(from, to, set, 4);
set += 4, clear += 4, size -= 4;
clearDistRange(to, clear, size);
copyDistRange(from, to, set, size);
// Copy pending interrupts (I[CS]PENDRn; R0 is per-CPU banked)
set = GicV2::GICD_ISPENDR.start();
clear = GicV2::GICD_ICPENDR.start();
size = GicV2::itLines / 8;
clearBankedDistRange(to, clear, 4);
copyBankedDistRange(from, to, set, 4);
set += 4, clear += 4, size -= 4;
clearDistRange(to, clear, size);
copyDistRange(from, to, set, size);
// Copy active interrupts (I[CS]ACTIVERn; R0 is per-CPU banked)
set = GicV2::GICD_ISACTIVER.start();
clear = GicV2::GICD_ICACTIVER.start();
size = GicV2::itLines / 8;
clearBankedDistRange(to, clear, 4);
copyBankedDistRange(from, to, set, 4);
set += 4, clear += 4, size -= 4;
clearDistRange(to, clear, size);
copyDistRange(from, to, set, size);
// Copy interrupt priorities (IPRIORITYRn; R0-7 are per-CPU banked)
set = GicV2::GICD_IPRIORITYR.start();
copyBankedDistRange(from, to, set, 32);
set += 32;
size = GicV2::itLines - 32;
copyDistRange(from, to, set, size);
// Copy interrupt processor target regs (ITARGETRn; R0-7 are read-only)
set = GicV2::GICD_ITARGETSR.start() + 32;
size = GicV2::itLines - 32;
copyDistRange(from, to, set, size);
// Copy interrupt configuration registers (ICFGRn)
set = GicV2::GICD_ICFGR.start();
size = GicV2::itLines / 4;
copyDistRange(from, to, set, size);
}
void
MuxingKvmGic::fromGicV2ToKvm()
{
copyGicState(static_cast<GicV2*>(this), kernelGic);
}
void
MuxingKvmGic::fromKvmToGicV2()
{
copyGicState(kernelGic, static_cast<GicV2*>(this));
// the values read for the Interrupt Priority Mask Register (PMR)
// have been shifted by three bits due to its having been emulated by
// a VGIC with only 5 PMR bits in its VMCR register. Presently the
// Linux kernel does not repair this inaccuracy, so we correct it here.
for (int cpu = 0; cpu < system.threads.size(); ++cpu) {
cpuPriority[cpu] <<= 3;
assert((cpuPriority[cpu] & ~0xff) == 0);
}
}
MuxingKvmGic *
MuxingKvmGicParams::create()
{
return new MuxingKvmGic(this);
}