| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements Matcher<const string&>, Matcher<string>, and |
| // utilities for defining matchers. |
| |
| #include "gmock/gmock-matchers.h" |
| #include "gmock/gmock-generated-matchers.h" |
| |
| #include <string.h> |
| #include <iostream> |
| #include <sstream> |
| #include <string> |
| |
| namespace testing { |
| namespace internal { |
| |
| // Returns the description for a matcher defined using the MATCHER*() |
| // macro where the user-supplied description string is "", if |
| // 'negation' is false; otherwise returns the description of the |
| // negation of the matcher. 'param_values' contains a list of strings |
| // that are the print-out of the matcher's parameters. |
| GTEST_API_ std::string FormatMatcherDescription(bool negation, |
| const char* matcher_name, |
| const Strings& param_values) { |
| std::string result = ConvertIdentifierNameToWords(matcher_name); |
| if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values); |
| return negation ? "not (" + result + ")" : result; |
| } |
| |
| // FindMaxBipartiteMatching and its helper class. |
| // |
| // Uses the well-known Ford-Fulkerson max flow method to find a maximum |
| // bipartite matching. Flow is considered to be from left to right. |
| // There is an implicit source node that is connected to all of the left |
| // nodes, and an implicit sink node that is connected to all of the |
| // right nodes. All edges have unit capacity. |
| // |
| // Neither the flow graph nor the residual flow graph are represented |
| // explicitly. Instead, they are implied by the information in 'graph' and |
| // a vector<int> called 'left_' whose elements are initialized to the |
| // value kUnused. This represents the initial state of the algorithm, |
| // where the flow graph is empty, and the residual flow graph has the |
| // following edges: |
| // - An edge from source to each left_ node |
| // - An edge from each right_ node to sink |
| // - An edge from each left_ node to each right_ node, if the |
| // corresponding edge exists in 'graph'. |
| // |
| // When the TryAugment() method adds a flow, it sets left_[l] = r for some |
| // nodes l and r. This induces the following changes: |
| // - The edges (source, l), (l, r), and (r, sink) are added to the |
| // flow graph. |
| // - The same three edges are removed from the residual flow graph. |
| // - The reverse edges (l, source), (r, l), and (sink, r) are added |
| // to the residual flow graph, which is a directional graph |
| // representing unused flow capacity. |
| // |
| // When the method augments a flow (moving left_[l] from some r1 to some |
| // other r2), this can be thought of as "undoing" the above steps with |
| // respect to r1 and "redoing" them with respect to r2. |
| // |
| // It bears repeating that the flow graph and residual flow graph are |
| // never represented explicitly, but can be derived by looking at the |
| // information in 'graph' and in left_. |
| // |
| // As an optimization, there is a second vector<int> called right_ which |
| // does not provide any new information. Instead, it enables more |
| // efficient queries about edges entering or leaving the right-side nodes |
| // of the flow or residual flow graphs. The following invariants are |
| // maintained: |
| // |
| // left[l] == kUnused or right[left[l]] == l |
| // right[r] == kUnused or left[right[r]] == r |
| // |
| // . [ source ] . |
| // . ||| . |
| // . ||| . |
| // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ . |
| // . || | | . |
| // . |\---> left[1]=-1 \--> right[1]=0 ---\| . |
| // . | || . |
| // . \----> left[2]=2 ------> right[2]=2 --\|| . |
| // . ||| . |
| // . elements matchers vvv . |
| // . [ sink ] . |
| // |
| // See Also: |
| // [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method". |
| // "Introduction to Algorithms (Second ed.)", pp. 651-664. |
| // [2] "Ford-Fulkerson algorithm", Wikipedia, |
| // 'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm' |
| class MaxBipartiteMatchState { |
| public: |
| explicit MaxBipartiteMatchState(const MatchMatrix& graph) |
| : graph_(&graph), |
| left_(graph_->LhsSize(), kUnused), |
| right_(graph_->RhsSize(), kUnused) {} |
| |
| // Returns the edges of a maximal match, each in the form {left, right}. |
| ElementMatcherPairs Compute() { |
| // 'seen' is used for path finding { 0: unseen, 1: seen }. |
| ::std::vector<char> seen; |
| // Searches the residual flow graph for a path from each left node to |
| // the sink in the residual flow graph, and if one is found, add flow |
| // to the graph. It's okay to search through the left nodes once. The |
| // edge from the implicit source node to each previously-visited left |
| // node will have flow if that left node has any path to the sink |
| // whatsoever. Subsequent augmentations can only add flow to the |
| // network, and cannot take away that previous flow unit from the source. |
| // Since the source-to-left edge can only carry one flow unit (or, |
| // each element can be matched to only one matcher), there is no need |
| // to visit the left nodes more than once looking for augmented paths. |
| // The flow is known to be possible or impossible by looking at the |
| // node once. |
| for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { |
| // Reset the path-marking vector and try to find a path from |
| // source to sink starting at the left_[ilhs] node. |
| GTEST_CHECK_(left_[ilhs] == kUnused) |
| << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs]; |
| // 'seen' initialized to 'graph_->RhsSize()' copies of 0. |
| seen.assign(graph_->RhsSize(), 0); |
| TryAugment(ilhs, &seen); |
| } |
| ElementMatcherPairs result; |
| for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) { |
| size_t irhs = left_[ilhs]; |
| if (irhs == kUnused) continue; |
| result.push_back(ElementMatcherPair(ilhs, irhs)); |
| } |
| return result; |
| } |
| |
| private: |
| static const size_t kUnused = static_cast<size_t>(-1); |
| |
| // Perform a depth-first search from left node ilhs to the sink. If a |
| // path is found, flow is added to the network by linking the left and |
| // right vector elements corresponding each segment of the path. |
| // Returns true if a path to sink was found, which means that a unit of |
| // flow was added to the network. The 'seen' vector elements correspond |
| // to right nodes and are marked to eliminate cycles from the search. |
| // |
| // Left nodes will only be explored at most once because they |
| // are accessible from at most one right node in the residual flow |
| // graph. |
| // |
| // Note that left_[ilhs] is the only element of left_ that TryAugment will |
| // potentially transition from kUnused to another value. Any other |
| // left_ element holding kUnused before TryAugment will be holding it |
| // when TryAugment returns. |
| // |
| bool TryAugment(size_t ilhs, ::std::vector<char>* seen) { |
| for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { |
| if ((*seen)[irhs]) continue; |
| if (!graph_->HasEdge(ilhs, irhs)) continue; |
| // There's an available edge from ilhs to irhs. |
| (*seen)[irhs] = 1; |
| // Next a search is performed to determine whether |
| // this edge is a dead end or leads to the sink. |
| // |
| // right_[irhs] == kUnused means that there is residual flow from |
| // right node irhs to the sink, so we can use that to finish this |
| // flow path and return success. |
| // |
| // Otherwise there is residual flow to some ilhs. We push flow |
| // along that path and call ourselves recursively to see if this |
| // ultimately leads to sink. |
| if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) { |
| // Add flow from left_[ilhs] to right_[irhs]. |
| left_[ilhs] = irhs; |
| right_[irhs] = ilhs; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| const MatchMatrix* graph_; // not owned |
| // Each element of the left_ vector represents a left hand side node |
| // (i.e. an element) and each element of right_ is a right hand side |
| // node (i.e. a matcher). The values in the left_ vector indicate |
| // outflow from that node to a node on the right_ side. The values |
| // in the right_ indicate inflow, and specify which left_ node is |
| // feeding that right_ node, if any. For example, left_[3] == 1 means |
| // there's a flow from element #3 to matcher #1. Such a flow would also |
| // be redundantly represented in the right_ vector as right_[1] == 3. |
| // Elements of left_ and right_ are either kUnused or mutually |
| // referent. Mutually referent means that left_[right_[i]] = i and |
| // right_[left_[i]] = i. |
| ::std::vector<size_t> left_; |
| ::std::vector<size_t> right_; |
| |
| GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState); |
| }; |
| |
| const size_t MaxBipartiteMatchState::kUnused; |
| |
| GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) { |
| return MaxBipartiteMatchState(g).Compute(); |
| } |
| |
| static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs, |
| ::std::ostream* stream) { |
| typedef ElementMatcherPairs::const_iterator Iter; |
| ::std::ostream& os = *stream; |
| os << "{"; |
| const char* sep = ""; |
| for (Iter it = pairs.begin(); it != pairs.end(); ++it) { |
| os << sep << "\n (" |
| << "element #" << it->first << ", " |
| << "matcher #" << it->second << ")"; |
| sep = ","; |
| } |
| os << "\n}"; |
| } |
| |
| bool MatchMatrix::NextGraph() { |
| for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { |
| for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { |
| char& b = matched_[SpaceIndex(ilhs, irhs)]; |
| if (!b) { |
| b = 1; |
| return true; |
| } |
| b = 0; |
| } |
| } |
| return false; |
| } |
| |
| void MatchMatrix::Randomize() { |
| for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { |
| for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { |
| char& b = matched_[SpaceIndex(ilhs, irhs)]; |
| b = static_cast<char>(rand() & 1); // NOLINT |
| } |
| } |
| } |
| |
| std::string MatchMatrix::DebugString() const { |
| ::std::stringstream ss; |
| const char* sep = ""; |
| for (size_t i = 0; i < LhsSize(); ++i) { |
| ss << sep; |
| for (size_t j = 0; j < RhsSize(); ++j) { |
| ss << HasEdge(i, j); |
| } |
| sep = ";"; |
| } |
| return ss.str(); |
| } |
| |
| void UnorderedElementsAreMatcherImplBase::DescribeToImpl( |
| ::std::ostream* os) const { |
| switch (match_flags()) { |
| case UnorderedMatcherRequire::ExactMatch: |
| if (matcher_describers_.empty()) { |
| *os << "is empty"; |
| return; |
| } |
| if (matcher_describers_.size() == 1) { |
| *os << "has " << Elements(1) << " and that element "; |
| matcher_describers_[0]->DescribeTo(os); |
| return; |
| } |
| *os << "has " << Elements(matcher_describers_.size()) |
| << " and there exists some permutation of elements such that:\n"; |
| break; |
| case UnorderedMatcherRequire::Superset: |
| *os << "a surjection from elements to requirements exists such that:\n"; |
| break; |
| case UnorderedMatcherRequire::Subset: |
| *os << "an injection from elements to requirements exists such that:\n"; |
| break; |
| } |
| |
| const char* sep = ""; |
| for (size_t i = 0; i != matcher_describers_.size(); ++i) { |
| *os << sep; |
| if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
| *os << " - element #" << i << " "; |
| } else { |
| *os << " - an element "; |
| } |
| matcher_describers_[i]->DescribeTo(os); |
| if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
| sep = ", and\n"; |
| } else { |
| sep = "\n"; |
| } |
| } |
| } |
| |
| void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl( |
| ::std::ostream* os) const { |
| switch (match_flags()) { |
| case UnorderedMatcherRequire::ExactMatch: |
| if (matcher_describers_.empty()) { |
| *os << "isn't empty"; |
| return; |
| } |
| if (matcher_describers_.size() == 1) { |
| *os << "doesn't have " << Elements(1) << ", or has " << Elements(1) |
| << " that "; |
| matcher_describers_[0]->DescribeNegationTo(os); |
| return; |
| } |
| *os << "doesn't have " << Elements(matcher_describers_.size()) |
| << ", or there exists no permutation of elements such that:\n"; |
| break; |
| case UnorderedMatcherRequire::Superset: |
| *os << "no surjection from elements to requirements exists such that:\n"; |
| break; |
| case UnorderedMatcherRequire::Subset: |
| *os << "no injection from elements to requirements exists such that:\n"; |
| break; |
| } |
| const char* sep = ""; |
| for (size_t i = 0; i != matcher_describers_.size(); ++i) { |
| *os << sep; |
| if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
| *os << " - element #" << i << " "; |
| } else { |
| *os << " - an element "; |
| } |
| matcher_describers_[i]->DescribeTo(os); |
| if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
| sep = ", and\n"; |
| } else { |
| sep = "\n"; |
| } |
| } |
| } |
| |
| // Checks that all matchers match at least one element, and that all |
| // elements match at least one matcher. This enables faster matching |
| // and better error reporting. |
| // Returns false, writing an explanation to 'listener', if and only |
| // if the success criteria are not met. |
| bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix( |
| const ::std::vector<std::string>& element_printouts, |
| const MatchMatrix& matrix, MatchResultListener* listener) const { |
| bool result = true; |
| ::std::vector<char> element_matched(matrix.LhsSize(), 0); |
| ::std::vector<char> matcher_matched(matrix.RhsSize(), 0); |
| |
| for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) { |
| for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) { |
| char matched = matrix.HasEdge(ilhs, irhs); |
| element_matched[ilhs] |= matched; |
| matcher_matched[irhs] |= matched; |
| } |
| } |
| |
| if (match_flags() & UnorderedMatcherRequire::Superset) { |
| const char* sep = |
| "where the following matchers don't match any elements:\n"; |
| for (size_t mi = 0; mi < matcher_matched.size(); ++mi) { |
| if (matcher_matched[mi]) continue; |
| result = false; |
| if (listener->IsInterested()) { |
| *listener << sep << "matcher #" << mi << ": "; |
| matcher_describers_[mi]->DescribeTo(listener->stream()); |
| sep = ",\n"; |
| } |
| } |
| } |
| |
| if (match_flags() & UnorderedMatcherRequire::Subset) { |
| const char* sep = |
| "where the following elements don't match any matchers:\n"; |
| const char* outer_sep = ""; |
| if (!result) { |
| outer_sep = "\nand "; |
| } |
| for (size_t ei = 0; ei < element_matched.size(); ++ei) { |
| if (element_matched[ei]) continue; |
| result = false; |
| if (listener->IsInterested()) { |
| *listener << outer_sep << sep << "element #" << ei << ": " |
| << element_printouts[ei]; |
| sep = ",\n"; |
| outer_sep = ""; |
| } |
| } |
| } |
| return result; |
| } |
| |
| bool UnorderedElementsAreMatcherImplBase::FindPairing( |
| const MatchMatrix& matrix, MatchResultListener* listener) const { |
| ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix); |
| |
| size_t max_flow = matches.size(); |
| if ((match_flags() & UnorderedMatcherRequire::Superset) && |
| max_flow < matrix.RhsSize()) { |
| if (listener->IsInterested()) { |
| *listener << "where no permutation of the elements can satisfy all " |
| "matchers, and the closest match is " |
| << max_flow << " of " << matrix.RhsSize() |
| << " matchers with the pairings:\n"; |
| LogElementMatcherPairVec(matches, listener->stream()); |
| } |
| return false; |
| } |
| if ((match_flags() & UnorderedMatcherRequire::Subset) && |
| max_flow < matrix.LhsSize()) { |
| if (listener->IsInterested()) { |
| *listener |
| << "where not all elements can be matched, and the closest match is " |
| << max_flow << " of " << matrix.RhsSize() |
| << " matchers with the pairings:\n"; |
| LogElementMatcherPairVec(matches, listener->stream()); |
| } |
| return false; |
| } |
| |
| if (matches.size() > 1) { |
| if (listener->IsInterested()) { |
| const char* sep = "where:\n"; |
| for (size_t mi = 0; mi < matches.size(); ++mi) { |
| *listener << sep << " - element #" << matches[mi].first |
| << " is matched by matcher #" << matches[mi].second; |
| sep = ",\n"; |
| } |
| } |
| } |
| return true; |
| } |
| |
| } // namespace internal |
| } // namespace testing |