| /* |
| * Copyright (c) 2011-2012, 2016-2018 ARM Limited |
| * Copyright (c) 2013 Advanced Micro Devices, Inc. |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2001-2006 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Steve Reinhardt |
| * Nathan Binkert |
| */ |
| |
| #ifndef __CPU_SIMPLE_THREAD_HH__ |
| #define __CPU_SIMPLE_THREAD_HH__ |
| |
| #include <array> |
| |
| #include "arch/decoder.hh" |
| #include "arch/generic/tlb.hh" |
| #include "arch/isa.hh" |
| #include "arch/isa_traits.hh" |
| #include "arch/registers.hh" |
| #include "arch/types.hh" |
| #include "base/types.hh" |
| #include "config/the_isa.hh" |
| #include "cpu/thread_context.hh" |
| #include "cpu/thread_state.hh" |
| #include "debug/CCRegs.hh" |
| #include "debug/FloatRegs.hh" |
| #include "debug/IntRegs.hh" |
| #include "debug/VecPredRegs.hh" |
| #include "debug/VecRegs.hh" |
| #include "mem/page_table.hh" |
| #include "mem/request.hh" |
| #include "sim/byteswap.hh" |
| #include "sim/eventq.hh" |
| #include "sim/full_system.hh" |
| #include "sim/process.hh" |
| #include "sim/serialize.hh" |
| #include "sim/system.hh" |
| |
| class BaseCPU; |
| class CheckerCPU; |
| |
| class FunctionProfile; |
| class ProfileNode; |
| |
| namespace Kernel { |
| class Statistics; |
| } |
| |
| /** |
| * The SimpleThread object provides a combination of the ThreadState |
| * object and the ThreadContext interface. It implements the |
| * ThreadContext interface and adds to the ThreadState object by adding all |
| * the objects needed for simple functional execution, including a |
| * simple architectural register file, and pointers to the ITB and DTB |
| * in full system mode. For CPU models that do not need more advanced |
| * ways to hold state (i.e. a separate physical register file, or |
| * separate fetch and commit PC's), this SimpleThread class provides |
| * all the necessary state for full architecture-level functional |
| * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for |
| * examples. |
| */ |
| |
| class SimpleThread : public ThreadState, public ThreadContext |
| { |
| protected: |
| typedef TheISA::MachInst MachInst; |
| using VecRegContainer = TheISA::VecRegContainer; |
| using VecElem = TheISA::VecElem; |
| using VecPredRegContainer = TheISA::VecPredRegContainer; |
| public: |
| typedef ThreadContext::Status Status; |
| |
| protected: |
| std::array<RegVal, TheISA::NumFloatRegs> floatRegs; |
| std::array<RegVal, TheISA::NumIntRegs> intRegs; |
| std::array<VecRegContainer, TheISA::NumVecRegs> vecRegs; |
| std::array<VecPredRegContainer, TheISA::NumVecPredRegs> vecPredRegs; |
| std::array<RegVal, TheISA::NumCCRegs> ccRegs; |
| TheISA::ISA *const isa; // one "instance" of the current ISA. |
| |
| TheISA::PCState _pcState; |
| |
| /** Did this instruction execute or is it predicated false */ |
| bool predicate; |
| |
| /** True if the memory access should be skipped for this instruction */ |
| bool memAccPredicate; |
| |
| public: |
| std::string name() const |
| { |
| return csprintf("%s.[tid:%i]", baseCpu->name(), threadId()); |
| } |
| |
| PCEventQueue pcEventQueue; |
| /** |
| * An instruction-based event queue. Used for scheduling events based on |
| * number of instructions committed. |
| */ |
| EventQueue comInstEventQueue; |
| |
| System *system; |
| |
| BaseTLB *itb; |
| BaseTLB *dtb; |
| |
| TheISA::Decoder decoder; |
| |
| // constructor: initialize SimpleThread from given process structure |
| // FS |
| SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system, |
| BaseTLB *_itb, BaseTLB *_dtb, TheISA::ISA *_isa, |
| bool use_kernel_stats = true); |
| // SE |
| SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system, |
| Process *_process, BaseTLB *_itb, BaseTLB *_dtb, |
| TheISA::ISA *_isa); |
| |
| virtual ~SimpleThread() {} |
| |
| void takeOverFrom(ThreadContext *oldContext) override; |
| |
| void regStats(const std::string &name) override; |
| |
| void copyState(ThreadContext *oldContext); |
| |
| void serialize(CheckpointOut &cp) const override; |
| void unserialize(CheckpointIn &cp) override; |
| void startup(); |
| |
| /*************************************************************** |
| * SimpleThread functions to provide CPU with access to various |
| * state. |
| **************************************************************/ |
| |
| /** Returns the pointer to this SimpleThread's ThreadContext. Used |
| * when a ThreadContext must be passed to objects outside of the |
| * CPU. |
| */ |
| ThreadContext *getTC() { return this; } |
| |
| void demapPage(Addr vaddr, uint64_t asn) |
| { |
| itb->demapPage(vaddr, asn); |
| dtb->demapPage(vaddr, asn); |
| } |
| |
| void demapInstPage(Addr vaddr, uint64_t asn) |
| { |
| itb->demapPage(vaddr, asn); |
| } |
| |
| void demapDataPage(Addr vaddr, uint64_t asn) |
| { |
| dtb->demapPage(vaddr, asn); |
| } |
| |
| void dumpFuncProfile() override; |
| |
| /******************************************* |
| * ThreadContext interface functions. |
| ******************************************/ |
| |
| bool schedule(PCEvent *e) override { return pcEventQueue.schedule(e); } |
| bool remove(PCEvent *e) override { return pcEventQueue.remove(e); } |
| |
| void |
| scheduleInstCountEvent(Event *event, Tick count) override |
| { |
| comInstEventQueue.schedule(event, count); |
| } |
| void |
| descheduleInstCountEvent(Event *event) override |
| { |
| comInstEventQueue.deschedule(event); |
| } |
| Tick |
| getCurrentInstCount() override |
| { |
| return comInstEventQueue.getCurTick(); |
| } |
| |
| BaseCPU *getCpuPtr() override { return baseCpu; } |
| |
| int cpuId() const override { return ThreadState::cpuId(); } |
| uint32_t socketId() const override { return ThreadState::socketId(); } |
| int threadId() const override { return ThreadState::threadId(); } |
| void setThreadId(int id) override { ThreadState::setThreadId(id); } |
| ContextID contextId() const override { return ThreadState::contextId(); } |
| void setContextId(ContextID id) override { ThreadState::setContextId(id); } |
| |
| BaseTLB *getITBPtr() override { return itb; } |
| |
| BaseTLB *getDTBPtr() override { return dtb; } |
| |
| CheckerCPU *getCheckerCpuPtr() override { return NULL; } |
| |
| TheISA::ISA *getIsaPtr() override { return isa; } |
| |
| TheISA::Decoder *getDecoderPtr() override { return &decoder; } |
| |
| System *getSystemPtr() override { return system; } |
| |
| Kernel::Statistics * |
| getKernelStats() override |
| { |
| return ThreadState::getKernelStats(); |
| } |
| |
| PortProxy &getPhysProxy() override { return ThreadState::getPhysProxy(); } |
| PortProxy &getVirtProxy() override { return ThreadState::getVirtProxy(); } |
| |
| void initMemProxies(ThreadContext *tc) override |
| { |
| ThreadState::initMemProxies(tc); |
| } |
| |
| Process *getProcessPtr() override { return ThreadState::getProcessPtr(); } |
| void setProcessPtr(Process *p) override { ThreadState::setProcessPtr(p); } |
| |
| Status status() const override { return _status; } |
| |
| void setStatus(Status newStatus) override { _status = newStatus; } |
| |
| /// Set the status to Active. |
| void activate() override; |
| |
| /// Set the status to Suspended. |
| void suspend() override; |
| |
| /// Set the status to Halted. |
| void halt() override; |
| |
| EndQuiesceEvent * |
| getQuiesceEvent() override |
| { |
| return ThreadState::getQuiesceEvent(); |
| } |
| |
| Tick |
| readLastActivate() override |
| { |
| return ThreadState::readLastActivate(); |
| } |
| Tick |
| readLastSuspend() override |
| { |
| return ThreadState::readLastSuspend(); |
| } |
| |
| void profileClear() override { ThreadState::profileClear(); } |
| void profileSample() override { ThreadState::profileSample(); } |
| |
| void copyArchRegs(ThreadContext *tc) override; |
| |
| void |
| clearArchRegs() override |
| { |
| _pcState = 0; |
| intRegs.fill(0); |
| floatRegs.fill(0); |
| for (auto &vec_reg: vecRegs) |
| vec_reg.zero(); |
| for (auto &pred_reg: vecPredRegs) |
| pred_reg.reset(); |
| ccRegs.fill(0); |
| isa->clear(); |
| } |
| |
| // |
| // New accessors for new decoder. |
| // |
| RegVal |
| readIntReg(RegIndex reg_idx) const override |
| { |
| int flatIndex = isa->flattenIntIndex(reg_idx); |
| assert(flatIndex < TheISA::NumIntRegs); |
| uint64_t regVal(readIntRegFlat(flatIndex)); |
| DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n", |
| reg_idx, flatIndex, regVal); |
| return regVal; |
| } |
| |
| RegVal |
| readFloatReg(RegIndex reg_idx) const override |
| { |
| int flatIndex = isa->flattenFloatIndex(reg_idx); |
| assert(flatIndex < TheISA::NumFloatRegs); |
| RegVal regVal(readFloatRegFlat(flatIndex)); |
| DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x.\n", |
| reg_idx, flatIndex, regVal); |
| return regVal; |
| } |
| |
| const VecRegContainer& |
| readVecReg(const RegId& reg) const override |
| { |
| int flatIndex = isa->flattenVecIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecRegs); |
| const VecRegContainer& regVal = readVecRegFlat(flatIndex); |
| DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s.\n", |
| reg.index(), flatIndex, regVal.print()); |
| return regVal; |
| } |
| |
| VecRegContainer& |
| getWritableVecReg(const RegId& reg) override |
| { |
| int flatIndex = isa->flattenVecIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecRegs); |
| VecRegContainer& regVal = getWritableVecRegFlat(flatIndex); |
| DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s for modify.\n", |
| reg.index(), flatIndex, regVal.print()); |
| return regVal; |
| } |
| |
| /** Vector Register Lane Interfaces. */ |
| /** @{ */ |
| /** Reads source vector <T> operand. */ |
| template <typename T> |
| VecLaneT<T, true> |
| readVecLane(const RegId& reg) const |
| { |
| int flatIndex = isa->flattenVecIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecRegs); |
| auto regVal = readVecLaneFlat<T>(flatIndex, reg.elemIndex()); |
| DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] as %lx.\n", |
| reg.index(), flatIndex, reg.elemIndex(), regVal); |
| return regVal; |
| } |
| |
| /** Reads source vector 8bit operand. */ |
| virtual ConstVecLane8 |
| readVec8BitLaneReg(const RegId ®) const override |
| { |
| return readVecLane<uint8_t>(reg); |
| } |
| |
| /** Reads source vector 16bit operand. */ |
| virtual ConstVecLane16 |
| readVec16BitLaneReg(const RegId ®) const override |
| { |
| return readVecLane<uint16_t>(reg); |
| } |
| |
| /** Reads source vector 32bit operand. */ |
| virtual ConstVecLane32 |
| readVec32BitLaneReg(const RegId ®) const override |
| { |
| return readVecLane<uint32_t>(reg); |
| } |
| |
| /** Reads source vector 64bit operand. */ |
| virtual ConstVecLane64 |
| readVec64BitLaneReg(const RegId ®) const override |
| { |
| return readVecLane<uint64_t>(reg); |
| } |
| |
| /** Write a lane of the destination vector register. */ |
| template <typename LD> |
| void |
| setVecLaneT(const RegId ®, const LD &val) |
| { |
| int flatIndex = isa->flattenVecIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecRegs); |
| setVecLaneFlat(flatIndex, reg.elemIndex(), val); |
| DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] to %lx.\n", |
| reg.index(), flatIndex, reg.elemIndex(), val); |
| } |
| virtual void |
| setVecLane(const RegId ®, const LaneData<LaneSize::Byte> &val) override |
| { |
| return setVecLaneT(reg, val); |
| } |
| virtual void |
| setVecLane(const RegId ®, |
| const LaneData<LaneSize::TwoByte> &val) override |
| { |
| return setVecLaneT(reg, val); |
| } |
| virtual void |
| setVecLane(const RegId ®, |
| const LaneData<LaneSize::FourByte> &val) override |
| { |
| return setVecLaneT(reg, val); |
| } |
| virtual void |
| setVecLane(const RegId ®, |
| const LaneData<LaneSize::EightByte> &val) override |
| { |
| return setVecLaneT(reg, val); |
| } |
| /** @} */ |
| |
| const VecElem & |
| readVecElem(const RegId ®) const override |
| { |
| int flatIndex = isa->flattenVecElemIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecRegs); |
| const VecElem& regVal = readVecElemFlat(flatIndex, reg.elemIndex()); |
| DPRINTF(VecRegs, "Reading element %d of vector reg %d (%d) as" |
| " %#x.\n", reg.elemIndex(), reg.index(), flatIndex, regVal); |
| return regVal; |
| } |
| |
| const VecPredRegContainer & |
| readVecPredReg(const RegId ®) const override |
| { |
| int flatIndex = isa->flattenVecPredIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecPredRegs); |
| const VecPredRegContainer& regVal = readVecPredRegFlat(flatIndex); |
| DPRINTF(VecPredRegs, "Reading predicate reg %d (%d) as %s.\n", |
| reg.index(), flatIndex, regVal.print()); |
| return regVal; |
| } |
| |
| VecPredRegContainer & |
| getWritableVecPredReg(const RegId ®) override |
| { |
| int flatIndex = isa->flattenVecPredIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecPredRegs); |
| VecPredRegContainer& regVal = getWritableVecPredRegFlat(flatIndex); |
| DPRINTF(VecPredRegs, |
| "Reading predicate reg %d (%d) as %s for modify.\n", |
| reg.index(), flatIndex, regVal.print()); |
| return regVal; |
| } |
| |
| RegVal |
| readCCReg(RegIndex reg_idx) const override |
| { |
| int flatIndex = isa->flattenCCIndex(reg_idx); |
| assert(0 <= flatIndex); |
| assert(flatIndex < TheISA::NumCCRegs); |
| uint64_t regVal(readCCRegFlat(flatIndex)); |
| DPRINTF(CCRegs, "Reading CC reg %d (%d) as %#x.\n", |
| reg_idx, flatIndex, regVal); |
| return regVal; |
| } |
| |
| void |
| setIntReg(RegIndex reg_idx, RegVal val) override |
| { |
| int flatIndex = isa->flattenIntIndex(reg_idx); |
| assert(flatIndex < TheISA::NumIntRegs); |
| DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n", |
| reg_idx, flatIndex, val); |
| setIntRegFlat(flatIndex, val); |
| } |
| |
| void |
| setFloatReg(RegIndex reg_idx, RegVal val) override |
| { |
| int flatIndex = isa->flattenFloatIndex(reg_idx); |
| assert(flatIndex < TheISA::NumFloatRegs); |
| // XXX: Fix array out of bounds compiler error for gem5.fast |
| // when checkercpu enabled |
| if (flatIndex < TheISA::NumFloatRegs) |
| setFloatRegFlat(flatIndex, val); |
| DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x.\n", |
| reg_idx, flatIndex, val); |
| } |
| |
| void |
| setVecReg(const RegId ®, const VecRegContainer &val) override |
| { |
| int flatIndex = isa->flattenVecIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecRegs); |
| setVecRegFlat(flatIndex, val); |
| DPRINTF(VecRegs, "Setting vector reg %d (%d) to %s.\n", |
| reg.index(), flatIndex, val.print()); |
| } |
| |
| void |
| setVecElem(const RegId ®, const VecElem &val) override |
| { |
| int flatIndex = isa->flattenVecElemIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecRegs); |
| setVecElemFlat(flatIndex, reg.elemIndex(), val); |
| DPRINTF(VecRegs, "Setting element %d of vector reg %d (%d) to" |
| " %#x.\n", reg.elemIndex(), reg.index(), flatIndex, val); |
| } |
| |
| void |
| setVecPredReg(const RegId ®, const VecPredRegContainer &val) override |
| { |
| int flatIndex = isa->flattenVecPredIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecPredRegs); |
| setVecPredRegFlat(flatIndex, val); |
| DPRINTF(VecPredRegs, "Setting predicate reg %d (%d) to %s.\n", |
| reg.index(), flatIndex, val.print()); |
| } |
| |
| void |
| setCCReg(RegIndex reg_idx, RegVal val) override |
| { |
| int flatIndex = isa->flattenCCIndex(reg_idx); |
| assert(flatIndex < TheISA::NumCCRegs); |
| DPRINTF(CCRegs, "Setting CC reg %d (%d) to %#x.\n", |
| reg_idx, flatIndex, val); |
| setCCRegFlat(flatIndex, val); |
| } |
| |
| TheISA::PCState pcState() const override { return _pcState; } |
| void pcState(const TheISA::PCState &val) override { _pcState = val; } |
| |
| void |
| pcStateNoRecord(const TheISA::PCState &val) override |
| { |
| _pcState = val; |
| } |
| |
| Addr instAddr() const override { return _pcState.instAddr(); } |
| Addr nextInstAddr() const override { return _pcState.nextInstAddr(); } |
| MicroPC microPC() const override { return _pcState.microPC(); } |
| bool readPredicate() const { return predicate; } |
| void setPredicate(bool val) { predicate = val; } |
| |
| RegVal |
| readMiscRegNoEffect(RegIndex misc_reg) const override |
| { |
| return isa->readMiscRegNoEffect(misc_reg); |
| } |
| |
| RegVal |
| readMiscReg(RegIndex misc_reg) override |
| { |
| return isa->readMiscReg(misc_reg, this); |
| } |
| |
| void |
| setMiscRegNoEffect(RegIndex misc_reg, RegVal val) override |
| { |
| return isa->setMiscRegNoEffect(misc_reg, val); |
| } |
| |
| void |
| setMiscReg(RegIndex misc_reg, RegVal val) override |
| { |
| return isa->setMiscReg(misc_reg, val, this); |
| } |
| |
| RegId |
| flattenRegId(const RegId& regId) const override |
| { |
| return isa->flattenRegId(regId); |
| } |
| |
| unsigned readStCondFailures() const override { return storeCondFailures; } |
| |
| bool |
| readMemAccPredicate() |
| { |
| return memAccPredicate; |
| } |
| |
| void |
| setMemAccPredicate(bool val) |
| { |
| memAccPredicate = val; |
| } |
| |
| void |
| setStCondFailures(unsigned sc_failures) override |
| { |
| storeCondFailures = sc_failures; |
| } |
| |
| Counter |
| readFuncExeInst() const override |
| { |
| return ThreadState::readFuncExeInst(); |
| } |
| |
| void |
| syscall(Fault *fault) override |
| { |
| process->syscall(this, fault); |
| } |
| |
| RegVal readIntRegFlat(RegIndex idx) const override { return intRegs[idx]; } |
| void |
| setIntRegFlat(RegIndex idx, RegVal val) override |
| { |
| intRegs[idx] = val; |
| } |
| |
| RegVal |
| readFloatRegFlat(RegIndex idx) const override |
| { |
| return floatRegs[idx]; |
| } |
| void |
| setFloatRegFlat(RegIndex idx, RegVal val) override |
| { |
| floatRegs[idx] = val; |
| } |
| |
| const VecRegContainer & |
| readVecRegFlat(RegIndex reg) const override |
| { |
| return vecRegs[reg]; |
| } |
| |
| VecRegContainer & |
| getWritableVecRegFlat(RegIndex reg) override |
| { |
| return vecRegs[reg]; |
| } |
| |
| void |
| setVecRegFlat(RegIndex reg, const VecRegContainer &val) override |
| { |
| vecRegs[reg] = val; |
| } |
| |
| template <typename T> |
| VecLaneT<T, true> |
| readVecLaneFlat(RegIndex reg, int lId) const |
| { |
| return vecRegs[reg].laneView<T>(lId); |
| } |
| |
| template <typename LD> |
| void |
| setVecLaneFlat(RegIndex reg, int lId, const LD &val) |
| { |
| vecRegs[reg].laneView<typename LD::UnderlyingType>(lId) = val; |
| } |
| |
| const VecElem & |
| readVecElemFlat(RegIndex reg, const ElemIndex &elemIndex) const override |
| { |
| return vecRegs[reg].as<TheISA::VecElem>()[elemIndex]; |
| } |
| |
| void |
| setVecElemFlat(RegIndex reg, const ElemIndex &elemIndex, |
| const VecElem &val) override |
| { |
| vecRegs[reg].as<TheISA::VecElem>()[elemIndex] = val; |
| } |
| |
| const VecPredRegContainer & |
| readVecPredRegFlat(RegIndex reg) const override |
| { |
| return vecPredRegs[reg]; |
| } |
| |
| VecPredRegContainer & |
| getWritableVecPredRegFlat(RegIndex reg) override |
| { |
| return vecPredRegs[reg]; |
| } |
| |
| void |
| setVecPredRegFlat(RegIndex reg, const VecPredRegContainer &val) override |
| { |
| vecPredRegs[reg] = val; |
| } |
| |
| RegVal readCCRegFlat(RegIndex idx) const override { return ccRegs[idx]; } |
| void setCCRegFlat(RegIndex idx, RegVal val) override { ccRegs[idx] = val; } |
| }; |
| |
| |
| #endif // __CPU_CPU_EXEC_CONTEXT_HH__ |