blob: 400bc165a7f7524e7ae3796f4f414a2c5d40a2df [file] [log] [blame]
/*
* Copyright (c) 2012, 2016-2017 ARM Limited
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cpu/thread_context.hh"
#include <vector>
#include "arch/generic/vec_pred_reg.hh"
#include "base/logging.hh"
#include "base/trace.hh"
#include "config/the_isa.hh"
#include "cpu/base.hh"
#include "debug/Context.hh"
#include "debug/Quiesce.hh"
#include "mem/port.hh"
#include "params/BaseCPU.hh"
#include "sim/full_system.hh"
namespace gem5
{
void
ThreadContext::compare(ThreadContext *one, ThreadContext *two)
{
const auto &regClasses = one->getIsaPtr()->regClasses();
DPRINTF(Context, "Comparing thread contexts\n");
// First loop through the integer registers.
for (int i = 0; i < regClasses.at(IntRegClass).numRegs(); ++i) {
RegVal t1 = one->readIntReg(i);
RegVal t2 = two->readIntReg(i);
if (t1 != t2)
panic("Int reg idx %d doesn't match, one: %#x, two: %#x",
i, t1, t2);
}
// Then loop through the floating point registers.
for (int i = 0; i < regClasses.at(FloatRegClass).numRegs(); ++i) {
RegVal t1 = one->readFloatReg(i);
RegVal t2 = two->readFloatReg(i);
if (t1 != t2)
panic("Float reg idx %d doesn't match, one: %#x, two: %#x",
i, t1, t2);
}
// Then loop through the vector registers.
const auto &vec_class = regClasses.at(VecRegClass);
std::vector<uint8_t> vec1(vec_class.regBytes());
std::vector<uint8_t> vec2(vec_class.regBytes());
for (int i = 0; i < vec_class.numRegs(); ++i) {
RegId rid(VecRegClass, i);
one->getReg(rid, vec1.data());
two->getReg(rid, vec2.data());
if (vec1 != vec2) {
panic("Vec reg idx %d doesn't match, one: %#x, two: %#x",
i, vec_class.valString(vec1.data()),
vec_class.valString(vec2.data()));
}
}
// Then loop through the predicate registers.
const auto &vec_pred_class = regClasses.at(VecPredRegClass);
std::vector<uint8_t> pred1(vec_pred_class.regBytes());
std::vector<uint8_t> pred2(vec_pred_class.regBytes());
for (int i = 0; i < vec_pred_class.numRegs(); ++i) {
RegId rid(VecPredRegClass, i);
one->getReg(rid, pred1.data());
two->getReg(rid, pred2.data());
if (pred1 != pred2) {
panic("Pred reg idx %d doesn't match, one: %s, two: %s",
i, vec_pred_class.valString(pred1.data()),
vec_pred_class.valString(pred2.data()));
}
}
for (int i = 0; i < regClasses.at(MiscRegClass).numRegs(); ++i) {
RegVal t1 = one->readMiscRegNoEffect(i);
RegVal t2 = two->readMiscRegNoEffect(i);
if (t1 != t2)
panic("Misc reg idx %d doesn't match, one: %#x, two: %#x",
i, t1, t2);
}
// loop through the Condition Code registers.
for (int i = 0; i < regClasses.at(CCRegClass).numRegs(); ++i) {
RegVal t1 = one->readCCReg(i);
RegVal t2 = two->readCCReg(i);
if (t1 != t2)
panic("CC reg idx %d doesn't match, one: %#x, two: %#x",
i, t1, t2);
}
if (one->pcState() != two->pcState())
panic("PC state doesn't match.");
int id1 = one->cpuId();
int id2 = two->cpuId();
if (id1 != id2)
panic("CPU ids don't match, one: %d, two: %d", id1, id2);
const ContextID cid1 = one->contextId();
const ContextID cid2 = two->contextId();
if (cid1 != cid2)
panic("Context ids don't match, one: %d, two: %d", id1, id2);
}
void
ThreadContext::sendFunctional(PacketPtr pkt)
{
const auto *port =
dynamic_cast<const RequestPort *>(&getCpuPtr()->getDataPort());
assert(port);
port->sendFunctional(pkt);
}
void
ThreadContext::quiesce()
{
getSystemPtr()->threads.quiesce(contextId());
}
void
ThreadContext::quiesceTick(Tick resume)
{
getSystemPtr()->threads.quiesceTick(contextId(), resume);
}
RegVal
ThreadContext::getReg(const RegId &reg) const
{
return getRegFlat(flattenRegId(reg));
}
void *
ThreadContext::getWritableReg(const RegId &reg)
{
return getWritableRegFlat(flattenRegId(reg));
}
void
ThreadContext::setReg(const RegId &reg, RegVal val)
{
setRegFlat(flattenRegId(reg), val);
}
void
ThreadContext::getReg(const RegId &reg, void *val) const
{
getRegFlat(flattenRegId(reg), val);
}
void
ThreadContext::setReg(const RegId &reg, const void *val)
{
setRegFlat(flattenRegId(reg), val);
}
RegVal
ThreadContext::getRegFlat(const RegId &reg) const
{
RegVal val;
getRegFlat(reg, &val);
return val;
}
void
ThreadContext::setRegFlat(const RegId &reg, RegVal val)
{
setRegFlat(reg, &val);
}
void
serialize(const ThreadContext &tc, CheckpointOut &cp)
{
// Cast away the const so we can get the non-const ISA ptr, which we then
// use to get the const register classes.
auto &nc_tc = const_cast<ThreadContext &>(tc);
const auto &regClasses = nc_tc.getIsaPtr()->regClasses();
const size_t numFloats = regClasses.at(FloatRegClass).numRegs();
RegVal floatRegs[numFloats];
for (int i = 0; i < numFloats; ++i)
floatRegs[i] = tc.readFloatRegFlat(i);
// This is a bit ugly, but needed to maintain backwards
// compatibility.
arrayParamOut(cp, "floatRegs.i", floatRegs, numFloats);
const size_t numVecs = regClasses.at(VecRegClass).numRegs();
std::vector<TheISA::VecRegContainer> vecRegs(numVecs);
for (int i = 0; i < numVecs; ++i) {
vecRegs[i] = tc.readVecRegFlat(i);
}
SERIALIZE_CONTAINER(vecRegs);
const size_t numPreds = regClasses.at(VecPredRegClass).numRegs();
std::vector<TheISA::VecPredRegContainer> vecPredRegs(numPreds);
for (int i = 0; i < numPreds; ++i) {
tc.getRegFlat(RegId(VecPredRegClass, i), &vecPredRegs[i]);
}
SERIALIZE_CONTAINER(vecPredRegs);
const size_t numInts = regClasses.at(IntRegClass).numRegs();
RegVal intRegs[numInts];
for (int i = 0; i < numInts; ++i)
intRegs[i] = tc.readIntRegFlat(i);
SERIALIZE_ARRAY(intRegs, numInts);
const size_t numCcs = regClasses.at(CCRegClass).numRegs();
if (numCcs) {
RegVal ccRegs[numCcs];
for (int i = 0; i < numCcs; ++i)
ccRegs[i] = tc.readCCRegFlat(i);
SERIALIZE_ARRAY(ccRegs, numCcs);
}
tc.pcState().serialize(cp);
// thread_num and cpu_id are deterministic from the config
}
void
unserialize(ThreadContext &tc, CheckpointIn &cp)
{
const auto &regClasses = tc.getIsaPtr()->regClasses();
const size_t numFloats = regClasses.at(FloatRegClass).numRegs();
RegVal floatRegs[numFloats];
// This is a bit ugly, but needed to maintain backwards
// compatibility.
arrayParamIn(cp, "floatRegs.i", floatRegs, numFloats);
for (int i = 0; i < numFloats; ++i)
tc.setFloatRegFlat(i, floatRegs[i]);
const size_t numVecs = regClasses.at(VecRegClass).numRegs();
std::vector<TheISA::VecRegContainer> vecRegs(numVecs);
UNSERIALIZE_CONTAINER(vecRegs);
for (int i = 0; i < numVecs; ++i) {
tc.setVecRegFlat(i, vecRegs[i]);
}
const size_t numPreds = regClasses.at(VecPredRegClass).numRegs();
std::vector<TheISA::VecPredRegContainer> vecPredRegs(numPreds);
UNSERIALIZE_CONTAINER(vecPredRegs);
for (int i = 0; i < numPreds; ++i) {
tc.setRegFlat(RegId(VecPredRegClass, i), &vecPredRegs[i]);
}
const size_t numInts = regClasses.at(IntRegClass).numRegs();
RegVal intRegs[numInts];
UNSERIALIZE_ARRAY(intRegs, numInts);
for (int i = 0; i < numInts; ++i)
tc.setIntRegFlat(i, intRegs[i]);
const size_t numCcs = regClasses.at(CCRegClass).numRegs();
if (numCcs) {
RegVal ccRegs[numCcs];
UNSERIALIZE_ARRAY(ccRegs, numCcs);
for (int i = 0; i < numCcs; ++i)
tc.setCCRegFlat(i, ccRegs[i]);
}
std::unique_ptr<PCStateBase> pc_state(tc.pcState().clone());
pc_state->unserialize(cp);
tc.pcState(*pc_state);
// thread_num and cpu_id are deterministic from the config
}
void
takeOverFrom(ThreadContext &ntc, ThreadContext &otc)
{
assert(ntc.getProcessPtr() == otc.getProcessPtr());
ntc.setStatus(otc.status());
ntc.copyArchRegs(&otc);
ntc.setContextId(otc.contextId());
ntc.setThreadId(otc.threadId());
if (FullSystem)
assert(ntc.getSystemPtr() == otc.getSystemPtr());
otc.setStatus(ThreadContext::Halted);
}
} // namespace gem5