blob: e6de3f321934903daed4593de8ec626513dad237 [file] [log] [blame]
# Copyright (c) 2012-2013,2019 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#####################################################################
#
# System visualization using DOT
#
# While config.ini and config.json provide an almost complete listing
# of a system's components and connectivity, they lack a birds-eye
# view. The output generated by do_dot() is a DOT-based figure (as a
# pdf and an editable svg file) and its source dot code. Nodes are
# components, and edges represent the memory hierarchy: the edges are
# directed, from a master to slave. Initially all nodes are
# generated, and then all edges are added. do_dot should be called
# with the top-most SimObject (namely root but not necessarily), the
# output folder and the output dot source filename. From the given
# node, both processes (node and edge creation) is performed
# recursivly, traversing all children of the given root.
#
# pydot is required. When missing, no output will be generated.
#
#####################################################################
from __future__ import print_function
from __future__ import absolute_import
import m5, os, re
from m5.SimObject import isRoot, isSimObjectVector
from m5.params import PortRef, isNullPointer
from m5.util import warn
try:
import pydot
except:
pydot = False
def simnode_children(simNode):
for child in simNode._children.values():
if isNullPointer(child):
continue
if isSimObjectVector(child):
for obj in child:
if not isNullPointer(obj):
yield obj
else:
yield child
# need to create all nodes (components) before creating edges (memory channels)
def dot_create_nodes(simNode, callgraph):
if isRoot(simNode):
label = "root"
else:
label = simNode._name
full_path = re.sub('\.', '_', simNode.path())
# add class name under the label
label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
# each component is a sub-graph (cluster)
cluster = dot_create_cluster(simNode, full_path, label)
# create nodes per port
for port_name in simNode._ports.keys():
port = simNode._port_refs.get(port_name, None)
if port != None:
full_port_name = full_path + "_" + port_name
port_node = dot_create_node(simNode, full_port_name, port_name)
cluster.add_node(port_node)
# recurse to children
for child in simnode_children(simNode):
dot_create_nodes(child, cluster)
callgraph.add_subgraph(cluster)
# create all edges according to memory hierarchy
def dot_create_edges(simNode, callgraph):
for port_name in simNode._ports.keys():
port = simNode._port_refs.get(port_name, None)
if port != None:
full_path = re.sub('\.', '_', simNode.path())
full_port_name = full_path + "_" + port_name
port_node = dot_create_node(simNode, full_port_name, port_name)
# create edges
if isinstance(port, PortRef):
if port.peer:
dot_add_edge(simNode, callgraph, full_port_name, port)
else:
for p in port.elements:
if p.peer:
dot_add_edge(simNode, callgraph, full_port_name, p)
# recurse to children
for child in simnode_children(simNode):
dot_create_edges(child, callgraph)
def dot_add_edge(simNode, callgraph, full_port_name, port):
peer = port.peer
full_peer_path = re.sub('\.', '_', peer.simobj.path())
full_peer_port_name = full_peer_path + "_" + peer.name
# Each edge is encountered twice, once for each peer. We only want one
# edge, so we'll arbitrarily chose which peer "wins" based on their names.
if full_peer_port_name < full_port_name:
dir_type = {
(False, False) : 'both',
(True, False) : 'forward',
(False, True) : 'back',
(True, True) : 'none'
}[ (port.is_source,
peer.is_source) ]
edge = pydot.Edge(full_port_name, full_peer_port_name, dir=dir_type)
callgraph.add_edge(edge)
def dot_create_cluster(simNode, full_path, label):
# get the parameter values of the node and use them as a tooltip
ini_strings = []
for param in sorted(simNode._params.keys()):
value = simNode._values.get(param)
if value != None:
# parameter name = value in HTML friendly format
ini_strings.append(str(param) + "&#61;" +
simNode._values[param].ini_str())
# join all the parameters with an HTML newline
tooltip = "&#10;\\".join(ini_strings)
return pydot.Cluster( \
full_path, \
shape = "Mrecord", \
label = label, \
tooltip = "\"" + tooltip + "\"", \
style = "\"rounded, filled\"", \
color = "#000000", \
fillcolor = dot_gen_colour(simNode), \
fontname = "Arial", \
fontsize = "14", \
fontcolor = "#000000" \
)
def dot_create_node(simNode, full_path, label):
return pydot.Node( \
full_path, \
shape = "Mrecord", \
label = label, \
style = "\"rounded, filled\"", \
color = "#000000", \
fillcolor = dot_gen_colour(simNode, True), \
fontname = "Arial", \
fontsize = "14", \
fontcolor = "#000000" \
)
# an enumerator for different kinds of node types, at the moment we
# discern the majority of node types, with the caches being the
# notable exception
class NodeType:
SYS = 0
CPU = 1
XBAR = 2
MEM = 3
DEV = 4
OTHER = 5
# based on the sim object, determine the node type
def get_node_type(simNode):
if isinstance(simNode, m5.objects.System):
return NodeType.SYS
# NULL ISA has no BaseCPU or PioDevice, so check if these names
# exists before using them
elif 'BaseCPU' in dir(m5.objects) and \
isinstance(simNode, m5.objects.BaseCPU):
return NodeType.CPU
elif 'PioDevice' in dir(m5.objects) and \
isinstance(simNode, m5.objects.PioDevice):
return NodeType.DEV
elif isinstance(simNode, m5.objects.BaseXBar):
return NodeType.XBAR
elif isinstance(simNode, m5.objects.AbstractMemory):
return NodeType.MEM
else:
return NodeType.OTHER
# based on the node type, determine the colour as an RGB tuple, the
# palette is rather arbitrary at this point (some coherent natural
# tones), and someone that feels artistic should probably have a look
def get_type_colour(nodeType):
if nodeType == NodeType.SYS:
return (228, 231, 235)
elif nodeType == NodeType.CPU:
return (187, 198, 217)
elif nodeType == NodeType.XBAR:
return (111, 121, 140)
elif nodeType == NodeType.MEM:
return (94, 89, 88)
elif nodeType == NodeType.DEV:
return (199, 167, 147)
elif nodeType == NodeType.OTHER:
# use a relatively gray shade
return (186, 182, 174)
# generate colour for a node, either corresponding to a sim object or a
# port
def dot_gen_colour(simNode, isPort = False):
# determine the type of the current node, and also its parent, if
# the node is not the same type as the parent then we use the base
# colour for its type
node_type = get_node_type(simNode)
if simNode._parent:
parent_type = get_node_type(simNode._parent)
else:
parent_type = NodeType.OTHER
# if this node is the same type as the parent, then scale the
# colour based on the depth such that the deeper levels in the
# hierarchy get darker colours
if node_type == parent_type:
# start out with a depth of zero
depth = 0
parent = simNode._parent
# find the closes parent that is not the same type
while parent and get_node_type(parent) == parent_type:
depth = depth + 1
parent = parent._parent
node_colour = get_type_colour(parent_type)
# slightly arbitrary, but assume that the depth is less than
# five levels
r, g, b = map(lambda x: x * max(1 - depth / 7.0, 0.3), node_colour)
else:
node_colour = get_type_colour(node_type)
r, g, b = node_colour
# if we are colouring a port, then make it a slightly darker shade
# than the node that encapsulates it, once again use a magic constant
if isPort:
r, g, b = map(lambda x: 0.8 * x, (r, g, b))
return dot_rgb_to_html(r, g, b)
def dot_rgb_to_html(r, g, b):
return "#%.2x%.2x%.2x" % (r, g, b)
# We need to create all of the clock domains. We abuse the alpha channel to get
# the correct domain colouring.
def dot_add_clk_domain(c_dom, v_dom):
label = "\"" + str(c_dom) + "\ :\ " + str(v_dom) + "\""
label = re.sub('\.', '_', str(label))
full_path = re.sub('\.', '_', str(c_dom))
return pydot.Cluster( \
full_path, \
shape = "Mrecord", \
label = label, \
style = "\"rounded, filled, dashed\"", \
color = "#000000", \
fillcolor = "#AFC8AF8F", \
fontname = "Arial", \
fontsize = "14", \
fontcolor = "#000000" \
)
def dot_create_dvfs_nodes(simNode, callgraph, domain=None):
if isRoot(simNode):
label = "root"
else:
label = simNode._name
full_path = re.sub('\.', '_', simNode.path())
# add class name under the label
label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
# each component is a sub-graph (cluster)
cluster = dot_create_cluster(simNode, full_path, label)
# create nodes per port
for port_name in simNode._ports.keys():
port = simNode._port_refs.get(port_name, None)
if port != None:
full_port_name = full_path + "_" + port_name
port_node = dot_create_node(simNode, full_port_name, port_name)
cluster.add_node(port_node)
# Dictionary of DVFS domains
dvfs_domains = {}
# recurse to children
for child in simnode_children(simNode):
try:
c_dom = child.__getattr__('clk_domain')
v_dom = c_dom.__getattr__('voltage_domain')
except AttributeError:
# Just re-use the domain from above
c_dom = domain
v_dom = c_dom.__getattr__('voltage_domain')
pass
if c_dom == domain or c_dom == None:
dot_create_dvfs_nodes(child, cluster, domain)
else:
if c_dom not in dvfs_domains:
dvfs_cluster = dot_add_clk_domain(c_dom, v_dom)
dvfs_domains[c_dom] = dvfs_cluster
else:
dvfs_cluster = dvfs_domains[c_dom]
dot_create_dvfs_nodes(child, dvfs_cluster, c_dom)
for key in dvfs_domains:
cluster.add_subgraph(dvfs_domains[key])
callgraph.add_subgraph(cluster)
def do_dot(root, outdir, dotFilename):
if not pydot:
warn("No dot file generated. " +
"Please install pydot to generate the dot file and pdf.")
return
# * use ranksep > 1.0 for for vertical separation between nodes
# especially useful if you need to annotate edges using e.g. visio
# which accepts svg format
# * no need for hoizontal separation as nothing moves horizonally
callgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
dot_create_nodes(root, callgraph)
dot_create_edges(root, callgraph)
dot_filename = os.path.join(outdir, dotFilename)
callgraph.write(dot_filename)
try:
# dot crashes if the figure is extremely wide.
# So avoid terminating simulation unnecessarily
callgraph.write_svg(dot_filename + ".svg")
callgraph.write_pdf(dot_filename + ".pdf")
except:
warn("failed to generate dot output from %s", dot_filename)
def do_dvfs_dot(root, outdir, dotFilename):
if not pydot:
warn("No dot file generated. " +
"Please install pydot to generate the dot file and pdf.")
return
# There is a chance that we are unable to resolve the clock or
# voltage domains. If so, we fail silently.
try:
dvfsgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
dot_create_dvfs_nodes(root, dvfsgraph)
dot_create_edges(root, dvfsgraph)
dot_filename = os.path.join(outdir, dotFilename)
dvfsgraph.write(dot_filename)
except:
warn("Failed to generate dot graph for DVFS domains")
return
try:
# dot crashes if the figure is extremely wide.
# So avoid terminating simulation unnecessarily
dvfsgraph.write_svg(dot_filename + ".svg")
dvfsgraph.write_pdf(dot_filename + ".pdf")
except:
warn("failed to generate dot output from %s", dot_filename)