| /* Copyright (c) 2012 Massachusetts Institute of Technology |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "model/optical/OpticalLinkBackendTx.h" |
| |
| #include "util/Constants.h" |
| #include "model/PortInfo.h" |
| #include "model/TransitionInfo.h" |
| #include "model/EventInfo.h" |
| #include "model/electrical/MuxTreeSerializer.h" |
| #include "model/electrical/BarrelShifter.h" |
| #include "model/electrical/Multiplexer.h" |
| #include <cmath> |
| |
| namespace DSENT |
| { |
| // TODO: Kind of don't like the way thermal tuning is written here. Maybe will switch |
| // to curve fitting the CICC paper, which uses results from a monte-carlo sim |
| |
| OpticalLinkBackendTx::OpticalLinkBackendTx(const String& instance_name_, const TechModel* tech_model_) |
| : ElectricalModel(instance_name_, tech_model_) |
| { |
| initParameters(); |
| initProperties(); |
| } |
| |
| OpticalLinkBackendTx::~OpticalLinkBackendTx() |
| {} |
| |
| void OpticalLinkBackendTx::initParameters() |
| { |
| addParameterName("InBits"); |
| addParameterName("CoreDataRate"); |
| addParameterName("LinkDataRate"); |
| addParameterName("RingTuningMethod"); |
| addParameterName("BitDuplicate"); |
| return; |
| } |
| |
| void OpticalLinkBackendTx::initProperties() |
| { |
| return; |
| } |
| |
| void OpticalLinkBackendTx::constructModel() |
| { |
| unsigned int in_bits = getParameter("InBits"); |
| double core_data_rate = getParameter("CoreDataRate"); |
| double link_data_rate = getParameter("LinkDataRate"); |
| const String& tuning_method = getParameter("RingTuningMethod");; |
| bool bit_duplicate = getParameter("BitDuplicate"); |
| |
| // Calculate serialization ratio |
| unsigned int serialization_ratio = (unsigned int) floor(link_data_rate / core_data_rate); |
| ASSERT(serialization_ratio == link_data_rate / core_data_rate, |
| "[Error] " + getInstanceName() + " -> Cannot have non-integer serialization ratios " + |
| "(" + (String) (core_data_rate / link_data_rate) + ")!"); |
| |
| // Calculate output width |
| ASSERT(floor((double) in_bits / serialization_ratio) == (double) in_bits / serialization_ratio, |
| "[Error] " + getInstanceName() + " -> Input width (" + (String) in_bits + ") " + |
| "must be a multiple of the serialization ratio (" + (String) serialization_ratio + ")!"); |
| unsigned int out_bits = in_bits / serialization_ratio; |
| |
| getGenProperties()->set("SerializationRatio", serialization_ratio); |
| getGenProperties()->set("OutBits", out_bits); |
| |
| // Create ports |
| createInputPort("In", makeNetIndex(0, in_bits-1)); |
| createInputPort("LinkCK"); |
| createOutputPort("Out", makeNetIndex(0, out_bits-1)); |
| |
| //Create energy, power, and area results |
| createElectricalResults(); |
| // Create ring heating power cost |
| addNddPowerResult(new AtomicResult("RingTuning")); |
| // Create process bits event |
| createElectricalEventResult("ProcessBits"); |
| getEventInfo("ProcessBits")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) serialization_ratio / 2.0, 0.0)); |
| // Set conditions during idle state |
| getEventInfo("Idle")->setStaticTransitionInfos(); |
| getEventInfo("Idle")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) serialization_ratio / 2.0, 0.0)); |
| |
| // Create serializer |
| const String& serializer_name = "Serializer"; |
| MuxTreeSerializer* serializer = new MuxTreeSerializer(serializer_name, getTechModel()); |
| serializer->setParameter("InBits", in_bits); |
| serializer->setParameter("InDataRate", core_data_rate); |
| serializer->setParameter("OutDataRate", link_data_rate); |
| serializer->setParameter("BitDuplicate", bit_duplicate); |
| serializer->construct(); |
| |
| addSubInstances(serializer, 1.0); |
| addElectricalSubResults(serializer, 1.0); |
| getEventResult("ProcessBits")->addSubResult(serializer->getEventResult("Serialize"), serializer_name, 1.0); |
| |
| if ((tuning_method == "ThermalWithBitReshuffle") || (tuning_method == "ElectricalAssistWithBitReshuffle")) |
| { |
| // If a bit reshuffling backend is present, create the reshuffling backend |
| unsigned int reorder_degree = getBitReorderDegree(); |
| |
| // Create intermediate nets |
| createNet("SerializerIn", makeNetIndex(0, in_bits-1)); |
| createNet("ReorderIn", makeNetIndex(0, out_bits+reorder_degree-1)); |
| assign("ReorderIn", makeNetIndex(out_bits, out_bits+reorder_degree-1), "ReorderIn", makeNetIndex(0, reorder_degree-1)); |
| |
| // Create barrelshifter |
| unsigned int shift_index_min = (unsigned int)ceil(log2(serialization_ratio)); |
| unsigned int shift_index_max = std::max(shift_index_min, (unsigned int) ceil(log2(in_bits)) - 1); |
| |
| // Remember some things |
| getGenProperties()->set("ReorderDegree", reorder_degree); |
| getGenProperties()->set("ShiftIndexMin", shift_index_min); |
| getGenProperties()->set("ShiftIndexMax", shift_index_max); |
| |
| const String& barrel_shift_name = "BarrelShifter"; |
| BarrelShifter* barrel_shift = new BarrelShifter(barrel_shift_name, getTechModel()); |
| barrel_shift->setParameter("NumberBits", in_bits); |
| barrel_shift->setParameter("ShiftIndexMax", shift_index_max); |
| barrel_shift->setParameter("ShiftIndexMin", shift_index_min); |
| barrel_shift->setParameter("BitDuplicate", bit_duplicate); |
| barrel_shift->construct(); |
| |
| // Create bit reorder muxes |
| const String& reorder_mux_name = "ReorderMux"; |
| Multiplexer* reorder_mux = new Multiplexer(reorder_mux_name, getTechModel()); |
| reorder_mux->setParameter("NumberBits", out_bits); |
| reorder_mux->setParameter("NumberInputs", reorder_degree); |
| reorder_mux->setParameter("BitDuplicate", bit_duplicate); |
| reorder_mux->construct(); |
| |
| // Connect barrelshifter |
| // TODO: Connect barrelshift shifts! |
| portConnect(barrel_shift, "In", "In"); |
| portConnect(barrel_shift, "Out", "SerializerIn"); |
| |
| // Connect serializer |
| portConnect(serializer, "In", "SerializerIn"); |
| portConnect(serializer, "Out", "ReorderIn", makeNetIndex(0, out_bits-1)); |
| portConnect(serializer, "OutCK", "LinkCK"); |
| |
| // Connect bit reorder muxes |
| // TODO: Connect re-order multiplex select signals! |
| for (unsigned int i = 0; i < reorder_degree; i++) |
| portConnect(reorder_mux, "In" + (String) i, "ReorderIn", makeNetIndex(i, i+out_bits-1)); |
| portConnect(reorder_mux, "Out", "Out"); |
| |
| addSubInstances(barrel_shift, 1.0); |
| addSubInstances(reorder_mux, 1.0); |
| addElectricalSubResults(barrel_shift, 1.0); |
| addElectricalSubResults(reorder_mux, 1.0); |
| getEventResult("ProcessBits")->addSubResult(barrel_shift->getEventResult("BarrelShift"), barrel_shift_name, 1.0); |
| getEventResult("ProcessBits")->addSubResult(reorder_mux->getEventResult("Mux"), reorder_mux_name, 1.0); // This happens multiple times |
| } |
| else if ((tuning_method == "FullThermal") || (tuning_method == "AthermalWithTrim")) |
| { |
| // If no bit reshuffling backend is present, then just connect serializer up |
| portConnect(serializer, "In", "In"); |
| portConnect(serializer, "Out", "Out"); |
| portConnect(serializer, "OutCK", "LinkCK"); |
| } |
| else |
| { |
| ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!"); |
| } |
| |
| return; |
| } |
| |
| void OpticalLinkBackendTx::updateModel() |
| { |
| // Update everyone |
| Model::updateModel(); |
| // Update ring tuning power |
| getNddPowerResult("RingTuning")->setValue(getRingTuningPower()); |
| return; |
| } |
| |
| void OpticalLinkBackendTx::propagateTransitionInfo() |
| { |
| // Get parameters |
| const String& tuning_method = getParameter("RingTuningMethod"); |
| |
| // Update the serializer |
| if ((tuning_method == "ThermalWithBitReshuffle") || (tuning_method == "ElectricalAssistWithBitReshuffle")) |
| { |
| // Get generated properties |
| unsigned int reorder_degree = getGenProperties()->get("ReorderDegree").toUInt(); |
| unsigned int shift_index_min = getGenProperties()->get("ShiftIndexMin").toUInt(); |
| unsigned int shift_index_max = getGenProperties()->get("ShiftIndexMax").toUInt(); |
| |
| // Update barrel shifter |
| const String& barrel_shift_name = "BarrelShifter"; |
| ElectricalModel* barrel_shift = (ElectricalModel*) getSubInstance(barrel_shift_name); |
| propagatePortTransitionInfo(barrel_shift, "In", "In"); |
| // Set shift transitions to be very low (since it is affected by slow temperature time constants) |
| for (unsigned int i = shift_index_min; i <= shift_index_max; ++i) |
| barrel_shift->getInputPort("Shift" + (String) i)->setTransitionInfo(TransitionInfo(0.499, 0.001, 0.499)); |
| barrel_shift->use(); |
| |
| // Set serializer transition info |
| ElectricalModel* serializer = (ElectricalModel*) getSubInstance("Serializer"); |
| propagatePortTransitionInfo(serializer, "In", barrel_shift, "Out"); |
| propagatePortTransitionInfo(serializer, "OutCK", "LinkCK"); |
| serializer->use(); |
| |
| // Reorder mux shift select bits |
| unsigned int reorder_sel_bits = (unsigned int)ceil(log2(reorder_degree)); |
| |
| // Reorder mux probabilities |
| const String& reorder_mux_name = "ReorderMux"; |
| ElectricalModel* reorder_mux = (ElectricalModel*) getSubInstance(reorder_mux_name); |
| for (unsigned int i = 0; i < reorder_degree; ++i) |
| propagatePortTransitionInfo(reorder_mux, "In" + (String) i, serializer, "Out"); |
| // Set select transitions to be 0, since these are statically configured |
| for (unsigned int i = 0; i < reorder_sel_bits; ++i) |
| reorder_mux->getInputPort("Sel" + (String) i)->setTransitionInfo(TransitionInfo(0.5, 0.0, 0.5)); |
| reorder_mux->use(); |
| |
| // Set output transition info |
| propagatePortTransitionInfo("Out", reorder_mux, "Out"); |
| } |
| else if ((tuning_method == "FullThermal") || (tuning_method == "AthermalWithTrim")) |
| { |
| // Set serializer transition info |
| ElectricalModel* serializer = (ElectricalModel*) getSubInstance("Serializer"); |
| propagatePortTransitionInfo(serializer, "In", "In"); |
| propagatePortTransitionInfo(serializer, "OutCK", "LinkCK"); |
| serializer->use(); |
| |
| // Set output transition info |
| propagatePortTransitionInfo("Out", serializer, "Out"); |
| } |
| |
| return; |
| } |
| |
| double OpticalLinkBackendTx::getRingTuningPower() |
| { |
| // Get properties |
| const String& tuning_method = getParameter("RingTuningMethod");; |
| unsigned int number_rings = getGenProperties()->get("OutBits"); |
| |
| // Get tech model parameters |
| double R = getTechModel()->get("Ring->Radius"); |
| double n_g = getTechModel()->get("Ring->GroupIndex"); |
| double heating_efficiency = getTechModel()->get("Ring->HeatingEfficiency"); |
| // This can actually be derived if we know thermo-optic coefficient (delta n / delta T) |
| double tuning_efficiency = getTechModel()->get("Ring->TuningEfficiency"); |
| double sigma_r_local = getTechModel()->get("Ring->LocalVariationSigma"); |
| double sigma_r_systematic = getTechModel()->get("Ring->SystematicVariationSigma"); |
| double T_max = getTechModel()->get("Ring->TemperatureMax"); |
| double T_min = getTechModel()->get("Ring->TemperatureMin"); |
| double T = getTechModel()->get("Temperature"); |
| |
| // Get constants |
| double c = Constants::c; |
| double pi = Constants::pi; |
| |
| double tuning_power = 0.0; |
| |
| if (tuning_method == "ThermalWithBitReshuffle") |
| { |
| // When an electrical backend is present, rings only have to tune to the nearest channel |
| // This can be approximated as each ring tuning to something exactly 1 channel away |
| |
| // Setup calculations |
| double L = 2 * pi * R; // Optical length |
| double FSR = c / (n_g * L); // Free spectral range |
| double freq_sep = FSR / number_rings; // Channel separation |
| |
| // Calculate tuning power |
| tuning_power = number_rings * freq_sep / (tuning_efficiency * heating_efficiency); |
| } |
| else if (tuning_method == "ElectricalAssistWithBitReshuffle") |
| { |
| // Electrical assistance allows for a fraction of the tuning range to be |
| // covered electrically. This is most pronounced when the tuning range is small, |
| // such is the case when bit reshuffling is applied. The electrically |
| // assisted part of it pretty much comes for free... |
| |
| // Get electrically tunable range |
| double max_assist = getTechModel()->get("Ring->MaxElectricallyTunableFreq"); |
| |
| // Setup calculations |
| double L = 2 * pi * R; // Optical length |
| double FSR = c / (n_g * L); // Free spectral range |
| double freq_sep = FSR / number_rings; // Channel separation |
| double heating_range = std::max(0.0, freq_sep - max_assist); // The distance needed to bridge using heaters |
| |
| // Calculate tuning power, which is really only the power spent on heating since |
| // distance tuned electrically is pretty much free |
| tuning_power = number_rings * heating_range / (tuning_efficiency * heating_efficiency); |
| } |
| else if (tuning_method == "FullThermal") |
| { |
| // If there is no bit reshuffling backend, each ring must tune to an |
| // absolute channel frequency. Since we can only heat rings (and not cool), |
| // we can only red-shift (decrease frequency). Thus, a fabrication bias |
| // must be applied such that under any process and temperature corner, the |
| // ring resonance remains above channel resonance |
| // I'll use 3 sigmas of sigma_r_local and sigma_r_systematic, and bias against |
| // the full temperature range |
| double fabrication_bias_freq = 3.0 * sqrt(pow(sigma_r_local, 2) + pow(sigma_r_systematic, 2)) + |
| (T_max - T_min) * tuning_efficiency; |
| |
| // The local/systematic variations are 0 on average. Thus, the tuning distance can be calculated as |
| double tuning_distance = fabrication_bias_freq - (T - T_min) * tuning_efficiency; |
| |
| // Tuning power needed is just the number of rings * tuning distance / (tuning and heating efficiencies) |
| tuning_power = number_rings * tuning_distance / (tuning_efficiency * heating_efficiency); |
| } |
| else if (tuning_method == "AthermalWithTrim") |
| { |
| // Athermal! Each ring's process variations are trimmed! Everything is free! |
| // Basically an ideal scenario |
| tuning_power = 0; |
| } |
| else |
| { |
| ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!"); |
| } |
| |
| return tuning_power; |
| } |
| |
| unsigned int OpticalLinkBackendTx::getBitReorderDegree() |
| { |
| // Get properties |
| unsigned int number_rings = getGenProperties()->get("OutBits"); |
| |
| // Get tech model parameters |
| double R = getTechModel()->get("Ring->Radius"); |
| double n_g = getTechModel()->get("Ring->GroupIndex"); |
| // This can actually be derived if we know thermo-optic coefficient (delta n / delta T) |
| double sigma_r_local = getTechModel()->get("Ring->LocalVariationSigma"); |
| |
| // Get constants |
| double c = Constants::c; |
| double pi = Constants::pi; |
| |
| // Calculates the degree of bit re-order multiplexing needed for bit-reshuffling backend |
| // Bit reshuffling tuning is largely unaffected by sigma_r_systematic. However, sigma_r_local |
| // Can potentially throw each ring to a channel several channels away. This just calculates |
| // the degree of bit reorder muxing needed to realign bits in the correct order |
| |
| // Setup calculations |
| double L = 2 * pi * R; // Optical length |
| double FSR = c / (n_g * L); // Free spectral range |
| double freq_sep = FSR / number_rings; // Channel separation |
| // Using 4 sigmas as the worst re-ordering case (must double to get both sides) |
| unsigned int worst_case_channels = (unsigned int)ceil(2.0 * 4.0 * sigma_r_local / freq_sep); |
| |
| return worst_case_channels; |
| } |
| |
| } // namespace DSENT |
| |