blob: 22ce47f93440332a3e8ec558bd2781e0a5c852e0 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Giacomo Gabrielli
*/
// TODO: add support for suffixes of register specifiers in disasm strings.
#include "arch/arm/insts/sve.hh"
namespace ArmISA {
const char*
svePredTypeToStr(SvePredType pt)
{
switch (pt) {
case SvePredType::MERGE:
return "m";
case SvePredType::ZERO:
return "z";
default:
return "";
}
}
std::string
SvePredCountPredOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printIntReg(ss, dest);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, ", ");
printVecPredReg(ss, op1);
return ss.str();
}
std::string
SvePredCountOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
if (destIsVec) {
printVecReg(ss, dest, true);
} else {
printIntReg(ss, dest);
}
ccprintf(ss, ", ");
uint8_t opWidth = 64;
printVecPredReg(ss, gp);
ccprintf(ss, ", ");
if (srcIs32b)
opWidth = 32;
printIntReg(ss, dest, opWidth);
return ss.str();
}
std::string
SveIndexIIOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", #%d, #%d", imm1, imm2);
return ss.str();
}
std::string
SveIndexIROp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", #%d, ", imm1);
printIntReg(ss, op2);
return ss.str();
}
std::string
SveIndexRIOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printIntReg(ss, op1);
ccprintf(ss, ", #%d", imm2);
return ss.str();
}
std::string
SveIndexRROp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printIntReg(ss, op1);
ccprintf(ss, ", ");
printIntReg(ss, op2);
return ss.str();
}
std::string
SveWhileOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
ccprintf(ss, ", ");
uint8_t opWidth;
if (srcIs32b)
opWidth = 32;
else
opWidth = 64;
printIntReg(ss, op1, opWidth);
ccprintf(ss, ", ");
printIntReg(ss, op2, opWidth);
return ss.str();
}
std::string
SveCompTermOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printIntReg(ss, op1);
ccprintf(ss, ", ");
printIntReg(ss, op2);
return ss.str();
}
std::string
SveUnaryPredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, "/m, ");
printVecReg(ss, op1, true);
return ss.str();
}
std::string
SveUnaryUnpredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecReg(ss, op1, true);
return ss.str();
}
std::string
SveUnaryWideImmUnpredOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", #");
ss << imm;
return ss.str();
}
std::string
SveUnaryWideImmPredOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, (isMerging ? "/m" : "/z"));
ccprintf(ss, ", #");
ss << imm;
return ss.str();
}
std::string
SveBinImmUnpredConstrOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecPredReg(ss, op1);
ccprintf(ss, ", #");
ss << imm;
return ss.str();
}
std::string
SveBinImmPredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, "/m, ");
printVecReg(ss, dest, true);
ccprintf(ss, ", #");
ss << imm;
return ss.str();
}
std::string
SveBinWideImmUnpredOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecReg(ss, dest, true);
ccprintf(ss, ", #");
ss << imm;
return ss.str();
}
std::string
SveBinDestrPredOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, "/m, ");
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecReg(ss, op2, true);
return ss.str();
}
std::string
SveBinConstrPredOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
if (predType == SvePredType::MERGE || predType == SvePredType::ZERO) {
ccprintf(ss, "/%s", svePredTypeToStr(predType));
}
ccprintf(ss, ", ");
printVecReg(ss, op1, true);
ccprintf(ss, ", ");
printVecReg(ss, op2, true);
return ss.str();
}
std::string
SveBinUnpredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecReg(ss, op1, true);
ccprintf(ss, ", ");
printVecReg(ss, op2, true);
return ss.str();
}
std::string
SveBinIdxUnpredOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecReg(ss, op1, true);
ccprintf(ss, ", ");
printVecReg(ss, op2, true);
ccprintf(ss, "[");
ss << (uint64_t)index;
ccprintf(ss, "]");
return ss.str();
}
std::string
SvePredLogicalOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
if (isSel) {
ccprintf(ss, ", ");
} else {
ccprintf(ss, "/z, ");
}
printVecPredReg(ss, op1);
ccprintf(ss, ", ");
printVecPredReg(ss, op2);
return ss.str();
}
std::string
SvePredBinPermOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
ccprintf(ss, ", ");
printVecPredReg(ss, op1);
ccprintf(ss, ", ");
printVecPredReg(ss, op2);
return ss.str();
}
std::string
SveCmpOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, "/z, ");
printVecReg(ss, op1, true);
ccprintf(ss, ", ");
printVecReg(ss, op2, true);
return ss.str();
}
std::string
SveCmpImmOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, "/z, ");
printVecReg(ss, op1, true);
ccprintf(ss, ", #");
ss << imm;
return ss.str();
}
std::string
SveTerPredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, "/m, ");
printVecReg(ss, op1, true);
ccprintf(ss, ", ");
printVecReg(ss, op2, true);
return ss.str();
}
std::string
SveTerImmUnpredOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecReg(ss, op2, true);
ccprintf(ss, ", #");
ss << imm;
return ss.str();
}
std::string
SveReducOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printFloatReg(ss, dest);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, ", ");
printVecReg(ss, op1, true);
return ss.str();
}
std::string
SveOrdReducOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printFloatReg(ss, dest);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, ", ");
printFloatReg(ss, dest);
ccprintf(ss, ", ");
printVecReg(ss, op1, true);
return ss.str();
}
std::string
SvePtrueOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
if (imm != 0x1f) {
ccprintf(ss, ", ");
ss << sveDisasmPredCountImm(imm);
}
return ss.str();
}
std::string
SveIntCmpOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, "/z, ");
printVecReg(ss, op1, true);
ccprintf(ss, ", ");
if (op2IsWide) {
printVecReg(ss, op2, true);
} else {
printVecReg(ss, op2, true);
}
return ss.str();
}
std::string
SveIntCmpImmOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
ccprintf(ss, "/z, ");
printVecPredReg(ss, gp);
ccprintf(ss, ", ");
printVecReg(ss, op1, true);
ccprintf(ss, ", #");
ss << imm;
return ss.str();
}
std::string
SveAdrOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", [");
printVecReg(ss, op1, true);
ccprintf(ss, ", ");
printVecReg(ss, op2, true);
if (offsetFormat == SveAdrOffsetUnpackedSigned) {
ccprintf(ss, ", sxtw");
} else if (offsetFormat == SveAdrOffsetUnpackedUnsigned) {
ccprintf(ss, ", uxtw");
} else if (mult != 1) {
ccprintf(ss, ", lsl");
}
if (mult != 1) {
ss << __builtin_ctz(mult);
}
ccprintf(ss, "]");
return ss.str();
}
std::string
SveElemCountOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
static const char suffix[9] =
{'\0', 'b', 'h', '\0', 'w', '\0', '\0', '\0', 'd'};
std::stringstream ss;
ss << " " << mnemonic << suffix[esize] << " ";
if (dstIsVec) {
printVecReg(ss, dest, true);
} else {
if (dstIs32b) {
printIntReg(ss, dest, 32);
} else {
printIntReg(ss, dest, 64);
}
}
if (pattern != 0x1f) {
ccprintf(ss, ", ");
ss << sveDisasmPredCountImm(pattern);
if (imm != 1) {
ccprintf(ss, ", mul #");
ss << std::to_string(imm);
}
}
return ss.str();
}
std::string
SvePartBrkOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, isMerging ? "/m, " : "/z, ");
printVecPredReg(ss, op1);
return ss.str();
}
std::string
SvePartBrkPropOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, "/z, ");
printVecPredReg(ss, op1);
ccprintf(ss, ", ");
printVecPredReg(ss, op2);
return ss.str();
}
std::string
SveSelectOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
if (scalar)
printIntReg(ss, dest, scalar_width);
else if (simdFp)
printFloatReg(ss, dest);
else
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
if (conditional) {
ccprintf(ss, ", ");
if (scalar)
printIntReg(ss, dest, scalar_width);
else
printVecReg(ss, dest, true);
}
ccprintf(ss, ", ");
printVecReg(ss, op1, true);
return ss.str();
}
std::string
SveUnaryPredPredOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, ", ");
printVecPredReg(ss, op1);
return ss.str();
}
std::string
SveTblOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", { ");
printVecReg(ss, op1, true);
ccprintf(ss, " }, ");
printVecReg(ss, op2, true);
return ss.str();
}
std::string
SveUnpackOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
ccprintf(ss, ", ");
printVecPredReg(ss, op1);
return ss.str();
}
std::string
SvePredTestOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, gp);
ccprintf(ss, ", ");
printVecPredReg(ss, op1);
return ss.str();
}
std::string
SvePredUnaryWImplicitSrcOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
return ss.str();
}
std::string
SvePredUnaryWImplicitSrcPredOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, "/z, ");
return ss.str();
}
std::string
SvePredUnaryWImplicitDstOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, op1);
return ss.str();
}
std::string
SveWImplicitSrcDstOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
return ss.str();
}
std::string
SveBinImmUnpredDestrOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecReg(ss, op1, true);
ccprintf(ss, ", #");
ss << imm;
return ss.str();
}
std::string
SveBinImmIdxUnpredOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecReg(ss, op1, true);
ccprintf(ss, "[");
ss << imm;
ccprintf(ss, "]");
return ss.str();
}
std::string
SveUnarySca2VecUnpredOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
if (simdFp) {
printFloatReg(ss, op1);
} else {
printIntReg(ss, op1);
}
return ss.str();
}
std::string
SveDotProdIdxOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecReg(ss, op1, true);
ccprintf(ss, ", ");
printVecReg(ss, op2, true);
ccprintf(ss, "[");
ccprintf(ss, "%lu", imm);
ccprintf(ss, "]");
return ss.str();
}
std::string
SveDotProdOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecReg(ss, dest, true);
ccprintf(ss, ", ");
printVecReg(ss, op1, true);
ccprintf(ss, ", ");
printVecReg(ss, op2, true);
return ss.str();
}
std::string
SveComplexOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
ccprintf(ss, ", ");
printVecPredReg(ss, gp);
ccprintf(ss, "/m, ");
printVecPredReg(ss, op1);
ccprintf(ss, ", ");
printVecPredReg(ss, op2);
ccprintf(ss, ", #");
const char* rotstr[4] = {"0", "90", "180", "270"};
ccprintf(ss, rotstr[rot]);
return ss.str();
}
std::string
SveComplexIdxOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss, "", false);
printVecPredReg(ss, dest);
ccprintf(ss, ", ");
printVecPredReg(ss, op1);
ccprintf(ss, ", ");
printVecPredReg(ss, op2);
ccprintf(ss, "[");
ss << imm;
ccprintf(ss, "], #");
const char* rotstr[4] = {"0", "90", "180", "270"};
ccprintf(ss, rotstr[rot]);
return ss.str();
}
std::string
sveDisasmPredCountImm(uint8_t imm)
{
switch (imm) {
case 0x0:
return "POW2";
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
return "VL" + std::to_string(imm);
case 0x8:
case 0x9:
case 0xa:
case 0xb:
case 0xc:
case 0xd:
return "VL" + std::to_string(1 << ((imm & 0x7) + 3));
case 0x1d:
return "MUL4";
case 0x1e:
return "MUL3";
case 0x1f:
return "ALL";
default:
return "#" + std::to_string(imm);
}
}
unsigned int
sveDecodePredCount(uint8_t imm, unsigned int num_elems)
{
assert(num_elems > 0);
switch (imm) {
case 0x0:
// POW2
return 1 << (31 - __builtin_clz((uint32_t) num_elems));
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
// VL1, VL2, VL3, VL4, VL5, VL6, VL7
return (num_elems >= imm) ? imm : 0;
case 0x8:
case 0x9:
case 0xa:
case 0xb:
case 0xc:
case 0xd:
// VL8, VL16, VL32, VL64, VL128, VL256
{
unsigned int pcount = 1 << ((imm & 0x7) + 3);
return (num_elems >= pcount) ? pcount : 0;
}
case 0x1d:
// MUL4
return num_elems - (num_elems % 4);
case 0x1e:
// MUL3
return num_elems - (num_elems % 3);
case 0x1f:
// ALL
return num_elems;
default:
return 0;
}
}
uint64_t
sveExpandFpImmAddSub(uint8_t imm, uint8_t size)
{
static constexpr uint16_t fpOne16 = 0x3c00;
static constexpr uint16_t fpPointFive16 = 0x3800;
static constexpr uint32_t fpOne32 = 0x3f800000;
static constexpr uint32_t fpPointFive32 = 0x3f000000;
static constexpr uint64_t fpOne64 = 0x3ff0000000000000;
static constexpr uint64_t fpPointFive64 = 0x3fe0000000000000;
switch (size) {
case 0x1:
return imm ? fpOne16 : fpPointFive16;
case 0x2:
return imm ? fpOne32 : fpPointFive32;
case 0x3:
return imm ? fpOne64 : fpPointFive64;
default:
panic("Unsupported size");
}
}
uint64_t
sveExpandFpImmMaxMin(uint8_t imm, uint8_t size)
{
static constexpr uint16_t fpOne16 = 0x3c00;
static constexpr uint32_t fpOne32 = 0x3f800000;
static constexpr uint64_t fpOne64 = 0x3ff0000000000000;
switch (size) {
case 0x1:
return imm ? fpOne16 : 0x0;
case 0x2:
return imm ? fpOne32 : 0x0;
case 0x3:
return imm ? fpOne64 : 0x0;
default:
panic("Unsupported size");
}
}
uint64_t
sveExpandFpImmMul(uint8_t imm, uint8_t size)
{
static constexpr uint16_t fpTwo16 = 0x4000;
static constexpr uint16_t fpPointFive16 = 0x3800;
static constexpr uint32_t fpTwo32 = 0x40000000;
static constexpr uint32_t fpPointFive32 = 0x3f000000;
static constexpr uint64_t fpTwo64 = 0x4000000000000000;
static constexpr uint64_t fpPointFive64 = 0x3fe0000000000000;
switch (size) {
case 0x1:
return imm ? fpTwo16 : fpPointFive16;
case 0x2:
return imm ? fpTwo32 : fpPointFive32;
case 0x3:
return imm ? fpTwo64 : fpPointFive64;
default:
panic("Unsupported size");
}
}
} // namespace ArmISA