blob: ac0d54bf69ffef9cdf4728a19585823ea2826bbc [file] [log] [blame]
/*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Erik Hallnor
*/
/**
* @file
* Definition of BaseCache functions.
*/
#include "cpu/base.hh"
#include "cpu/smt.hh"
#include "mem/cache/base.hh"
#include "mem/cache/mshr.hh"
using namespace std;
BaseCache::CachePort::CachePort(const std::string &_name, BaseCache *_cache,
const std::string &_label,
std::vector<Range<Addr> > filter_ranges)
: SimpleTimingPort(_name, _cache), cache(_cache),
label(_label), otherPort(NULL),
blocked(false), mustSendRetry(false), filterRanges(filter_ranges)
{
}
BaseCache::BaseCache(const Params *p)
: MemObject(p),
mshrQueue("MSHRs", p->mshrs, 4, MSHRQueue_MSHRs),
writeBuffer("write buffer", p->write_buffers, p->mshrs+1000,
MSHRQueue_WriteBuffer),
blkSize(p->block_size),
hitLatency(p->latency),
numTarget(p->tgts_per_mshr),
blocked(0),
noTargetMSHR(NULL),
missCount(p->max_miss_count),
drainEvent(NULL)
{
}
void
BaseCache::CachePort::recvStatusChange(Port::Status status)
{
if (status == Port::RangeChange) {
otherPort->sendStatusChange(Port::RangeChange);
}
}
bool
BaseCache::CachePort::checkFunctional(PacketPtr pkt)
{
pkt->pushLabel(label);
bool done = SimpleTimingPort::checkFunctional(pkt);
pkt->popLabel();
return done;
}
int
BaseCache::CachePort::deviceBlockSize()
{
return cache->getBlockSize();
}
bool
BaseCache::CachePort::recvRetryCommon()
{
assert(waitingOnRetry);
waitingOnRetry = false;
return false;
}
void
BaseCache::CachePort::setBlocked()
{
assert(!blocked);
DPRINTF(Cache, "Cache Blocking\n");
blocked = true;
//Clear the retry flag
mustSendRetry = false;
}
void
BaseCache::CachePort::clearBlocked()
{
assert(blocked);
DPRINTF(Cache, "Cache Unblocking\n");
blocked = false;
if (mustSendRetry)
{
DPRINTF(Cache, "Cache Sending Retry\n");
mustSendRetry = false;
SendRetryEvent *ev = new SendRetryEvent(this, true);
// @TODO: need to find a better time (next bus cycle?)
ev->schedule(curTick + 1);
}
}
void
BaseCache::init()
{
if (!cpuSidePort || !memSidePort)
panic("Cache not hooked up on both sides\n");
cpuSidePort->sendStatusChange(Port::RangeChange);
}
void
BaseCache::regStats()
{
using namespace Stats;
// Hit statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
hits[access_idx]
.init(maxThreadsPerCPU)
.name(name() + "." + cstr + "_hits")
.desc("number of " + cstr + " hits")
.flags(total | nozero | nonan)
;
}
// These macros make it easier to sum the right subset of commands and
// to change the subset of commands that are considered "demand" vs
// "non-demand"
#define SUM_DEMAND(s) \
(s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::ReadExReq])
// should writebacks be included here? prior code was inconsistent...
#define SUM_NON_DEMAND(s) \
(s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq])
demandHits
.name(name() + ".demand_hits")
.desc("number of demand (read+write) hits")
.flags(total)
;
demandHits = SUM_DEMAND(hits);
overallHits
.name(name() + ".overall_hits")
.desc("number of overall hits")
.flags(total)
;
overallHits = demandHits + SUM_NON_DEMAND(hits);
// Miss statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
misses[access_idx]
.init(maxThreadsPerCPU)
.name(name() + "." + cstr + "_misses")
.desc("number of " + cstr + " misses")
.flags(total | nozero | nonan)
;
}
demandMisses
.name(name() + ".demand_misses")
.desc("number of demand (read+write) misses")
.flags(total)
;
demandMisses = SUM_DEMAND(misses);
overallMisses
.name(name() + ".overall_misses")
.desc("number of overall misses")
.flags(total)
;
overallMisses = demandMisses + SUM_NON_DEMAND(misses);
// Miss latency statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
missLatency[access_idx]
.init(maxThreadsPerCPU)
.name(name() + "." + cstr + "_miss_latency")
.desc("number of " + cstr + " miss cycles")
.flags(total | nozero | nonan)
;
}
demandMissLatency
.name(name() + ".demand_miss_latency")
.desc("number of demand (read+write) miss cycles")
.flags(total)
;
demandMissLatency = SUM_DEMAND(missLatency);
overallMissLatency
.name(name() + ".overall_miss_latency")
.desc("number of overall miss cycles")
.flags(total)
;
overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
// access formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
accesses[access_idx]
.name(name() + "." + cstr + "_accesses")
.desc("number of " + cstr + " accesses(hits+misses)")
.flags(total | nozero | nonan)
;
accesses[access_idx] = hits[access_idx] + misses[access_idx];
}
demandAccesses
.name(name() + ".demand_accesses")
.desc("number of demand (read+write) accesses")
.flags(total)
;
demandAccesses = demandHits + demandMisses;
overallAccesses
.name(name() + ".overall_accesses")
.desc("number of overall (read+write) accesses")
.flags(total)
;
overallAccesses = overallHits + overallMisses;
// miss rate formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
missRate[access_idx]
.name(name() + "." + cstr + "_miss_rate")
.desc("miss rate for " + cstr + " accesses")
.flags(total | nozero | nonan)
;
missRate[access_idx] = misses[access_idx] / accesses[access_idx];
}
demandMissRate
.name(name() + ".demand_miss_rate")
.desc("miss rate for demand accesses")
.flags(total)
;
demandMissRate = demandMisses / demandAccesses;
overallMissRate
.name(name() + ".overall_miss_rate")
.desc("miss rate for overall accesses")
.flags(total)
;
overallMissRate = overallMisses / overallAccesses;
// miss latency formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
avgMissLatency[access_idx]
.name(name() + "." + cstr + "_avg_miss_latency")
.desc("average " + cstr + " miss latency")
.flags(total | nozero | nonan)
;
avgMissLatency[access_idx] =
missLatency[access_idx] / misses[access_idx];
}
demandAvgMissLatency
.name(name() + ".demand_avg_miss_latency")
.desc("average overall miss latency")
.flags(total)
;
demandAvgMissLatency = demandMissLatency / demandMisses;
overallAvgMissLatency
.name(name() + ".overall_avg_miss_latency")
.desc("average overall miss latency")
.flags(total)
;
overallAvgMissLatency = overallMissLatency / overallMisses;
blocked_cycles.init(NUM_BLOCKED_CAUSES);
blocked_cycles
.name(name() + ".blocked_cycles")
.desc("number of cycles access was blocked")
.subname(Blocked_NoMSHRs, "no_mshrs")
.subname(Blocked_NoTargets, "no_targets")
;
blocked_causes.init(NUM_BLOCKED_CAUSES);
blocked_causes
.name(name() + ".blocked")
.desc("number of cycles access was blocked")
.subname(Blocked_NoMSHRs, "no_mshrs")
.subname(Blocked_NoTargets, "no_targets")
;
avg_blocked
.name(name() + ".avg_blocked_cycles")
.desc("average number of cycles each access was blocked")
.subname(Blocked_NoMSHRs, "no_mshrs")
.subname(Blocked_NoTargets, "no_targets")
;
avg_blocked = blocked_cycles / blocked_causes;
fastWrites
.name(name() + ".fast_writes")
.desc("number of fast writes performed")
;
cacheCopies
.name(name() + ".cache_copies")
.desc("number of cache copies performed")
;
writebacks
.init(maxThreadsPerCPU)
.name(name() + ".writebacks")
.desc("number of writebacks")
.flags(total)
;
// MSHR statistics
// MSHR hit statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_hits[access_idx]
.init(maxThreadsPerCPU)
.name(name() + "." + cstr + "_mshr_hits")
.desc("number of " + cstr + " MSHR hits")
.flags(total | nozero | nonan)
;
}
demandMshrHits
.name(name() + ".demand_mshr_hits")
.desc("number of demand (read+write) MSHR hits")
.flags(total)
;
demandMshrHits = SUM_DEMAND(mshr_hits);
overallMshrHits
.name(name() + ".overall_mshr_hits")
.desc("number of overall MSHR hits")
.flags(total)
;
overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
// MSHR miss statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_misses[access_idx]
.init(maxThreadsPerCPU)
.name(name() + "." + cstr + "_mshr_misses")
.desc("number of " + cstr + " MSHR misses")
.flags(total | nozero | nonan)
;
}
demandMshrMisses
.name(name() + ".demand_mshr_misses")
.desc("number of demand (read+write) MSHR misses")
.flags(total)
;
demandMshrMisses = SUM_DEMAND(mshr_misses);
overallMshrMisses
.name(name() + ".overall_mshr_misses")
.desc("number of overall MSHR misses")
.flags(total)
;
overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
// MSHR miss latency statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_miss_latency[access_idx]
.init(maxThreadsPerCPU)
.name(name() + "." + cstr + "_mshr_miss_latency")
.desc("number of " + cstr + " MSHR miss cycles")
.flags(total | nozero | nonan)
;
}
demandMshrMissLatency
.name(name() + ".demand_mshr_miss_latency")
.desc("number of demand (read+write) MSHR miss cycles")
.flags(total)
;
demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
overallMshrMissLatency
.name(name() + ".overall_mshr_miss_latency")
.desc("number of overall MSHR miss cycles")
.flags(total)
;
overallMshrMissLatency =
demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
// MSHR uncacheable statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_uncacheable[access_idx]
.init(maxThreadsPerCPU)
.name(name() + "." + cstr + "_mshr_uncacheable")
.desc("number of " + cstr + " MSHR uncacheable")
.flags(total | nozero | nonan)
;
}
overallMshrUncacheable
.name(name() + ".overall_mshr_uncacheable_misses")
.desc("number of overall MSHR uncacheable misses")
.flags(total)
;
overallMshrUncacheable =
SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
// MSHR miss latency statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_uncacheable_lat[access_idx]
.init(maxThreadsPerCPU)
.name(name() + "." + cstr + "_mshr_uncacheable_latency")
.desc("number of " + cstr + " MSHR uncacheable cycles")
.flags(total | nozero | nonan)
;
}
overallMshrUncacheableLatency
.name(name() + ".overall_mshr_uncacheable_latency")
.desc("number of overall MSHR uncacheable cycles")
.flags(total)
;
overallMshrUncacheableLatency =
SUM_DEMAND(mshr_uncacheable_lat) +
SUM_NON_DEMAND(mshr_uncacheable_lat);
#if 0
// MSHR access formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshrAccesses[access_idx]
.name(name() + "." + cstr + "_mshr_accesses")
.desc("number of " + cstr + " mshr accesses(hits+misses)")
.flags(total | nozero | nonan)
;
mshrAccesses[access_idx] =
mshr_hits[access_idx] + mshr_misses[access_idx]
+ mshr_uncacheable[access_idx];
}
demandMshrAccesses
.name(name() + ".demand_mshr_accesses")
.desc("number of demand (read+write) mshr accesses")
.flags(total | nozero | nonan)
;
demandMshrAccesses = demandMshrHits + demandMshrMisses;
overallMshrAccesses
.name(name() + ".overall_mshr_accesses")
.desc("number of overall (read+write) mshr accesses")
.flags(total | nozero | nonan)
;
overallMshrAccesses = overallMshrHits + overallMshrMisses
+ overallMshrUncacheable;
#endif
// MSHR miss rate formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshrMissRate[access_idx]
.name(name() + "." + cstr + "_mshr_miss_rate")
.desc("mshr miss rate for " + cstr + " accesses")
.flags(total | nozero | nonan)
;
mshrMissRate[access_idx] =
mshr_misses[access_idx] / accesses[access_idx];
}
demandMshrMissRate
.name(name() + ".demand_mshr_miss_rate")
.desc("mshr miss rate for demand accesses")
.flags(total)
;
demandMshrMissRate = demandMshrMisses / demandAccesses;
overallMshrMissRate
.name(name() + ".overall_mshr_miss_rate")
.desc("mshr miss rate for overall accesses")
.flags(total)
;
overallMshrMissRate = overallMshrMisses / overallAccesses;
// mshrMiss latency formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
avgMshrMissLatency[access_idx]
.name(name() + "." + cstr + "_avg_mshr_miss_latency")
.desc("average " + cstr + " mshr miss latency")
.flags(total | nozero | nonan)
;
avgMshrMissLatency[access_idx] =
mshr_miss_latency[access_idx] / mshr_misses[access_idx];
}
demandAvgMshrMissLatency
.name(name() + ".demand_avg_mshr_miss_latency")
.desc("average overall mshr miss latency")
.flags(total)
;
demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
overallAvgMshrMissLatency
.name(name() + ".overall_avg_mshr_miss_latency")
.desc("average overall mshr miss latency")
.flags(total)
;
overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
// mshrUncacheable latency formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
avgMshrUncacheableLatency[access_idx]
.name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
.desc("average " + cstr + " mshr uncacheable latency")
.flags(total | nozero | nonan)
;
avgMshrUncacheableLatency[access_idx] =
mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
}
overallAvgMshrUncacheableLatency
.name(name() + ".overall_avg_mshr_uncacheable_latency")
.desc("average overall mshr uncacheable latency")
.flags(total)
;
overallAvgMshrUncacheableLatency = overallMshrUncacheableLatency / overallMshrUncacheable;
mshr_cap_events
.init(maxThreadsPerCPU)
.name(name() + ".mshr_cap_events")
.desc("number of times MSHR cap was activated")
.flags(total)
;
//software prefetching stats
soft_prefetch_mshr_full
.init(maxThreadsPerCPU)
.name(name() + ".soft_prefetch_mshr_full")
.desc("number of mshr full events for SW prefetching instrutions")
.flags(total)
;
mshr_no_allocate_misses
.name(name() +".no_allocate_misses")
.desc("Number of misses that were no-allocate")
;
}
unsigned int
BaseCache::drain(Event *de)
{
int count = memSidePort->drain(de) + cpuSidePort->drain(de);
// Set status
if (count != 0) {
drainEvent = de;
changeState(SimObject::Draining);
return count;
}
changeState(SimObject::Drained);
return 0;
}