blob: 572f5fe074c51341e547df272b2a4ffcdb984c1a [file] [log] [blame]
/*
* Copyright (c) 1999-2011 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mem/ruby/system/RubySystem.hh"
#include <fcntl.h>
#include <zlib.h>
#include <cstdio>
#include <list>
#include "base/intmath.hh"
#include "base/statistics.hh"
#include "debug/RubyCacheTrace.hh"
#include "debug/RubySystem.hh"
#include "mem/ruby/common/Address.hh"
#include "mem/ruby/network/Network.hh"
#include "mem/simple_mem.hh"
#include "sim/eventq.hh"
#include "sim/simulate.hh"
using namespace std;
bool RubySystem::m_randomization;
uint32_t RubySystem::m_block_size_bytes;
uint32_t RubySystem::m_block_size_bits;
uint32_t RubySystem::m_memory_size_bits;
bool RubySystem::m_warmup_enabled = false;
// To look forward to allowing multiple RubySystem instances, track the number
// of RubySystems that need to be warmed up on checkpoint restore.
unsigned RubySystem::m_systems_to_warmup = 0;
bool RubySystem::m_cooldown_enabled = false;
RubySystem::RubySystem(const Params *p)
: ClockedObject(p), m_access_backing_store(p->access_backing_store),
m_cache_recorder(NULL)
{
m_randomization = p->randomization;
m_block_size_bytes = p->block_size_bytes;
assert(isPowerOf2(m_block_size_bytes));
m_block_size_bits = floorLog2(m_block_size_bytes);
m_memory_size_bits = p->memory_size_bits;
// Resize to the size of different machine types
m_abstract_controls.resize(MachineType_NUM);
// Collate the statistics before they are printed.
Stats::registerDumpCallback(new RubyStatsCallback(this));
// Create the profiler
m_profiler = new Profiler(p, this);
m_phys_mem = p->phys_mem;
}
void
RubySystem::registerNetwork(Network* network_ptr)
{
m_network = network_ptr;
}
void
RubySystem::registerAbstractController(AbstractController* cntrl)
{
m_abs_cntrl_vec.push_back(cntrl);
MachineID id = cntrl->getMachineID();
m_abstract_controls[id.getType()][id.getNum()] = cntrl;
}
RubySystem::~RubySystem()
{
delete m_network;
delete m_profiler;
}
void
RubySystem::makeCacheRecorder(uint8_t *uncompressed_trace,
uint64_t cache_trace_size,
uint64_t block_size_bytes)
{
vector<Sequencer*> sequencer_map;
Sequencer* sequencer_ptr = NULL;
for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
sequencer_map.push_back(m_abs_cntrl_vec[cntrl]->getCPUSequencer());
if (sequencer_ptr == NULL) {
sequencer_ptr = sequencer_map[cntrl];
}
}
assert(sequencer_ptr != NULL);
for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
if (sequencer_map[cntrl] == NULL) {
sequencer_map[cntrl] = sequencer_ptr;
}
}
// Remove the old CacheRecorder if it's still hanging about.
if (m_cache_recorder != NULL) {
delete m_cache_recorder;
}
// Create the CacheRecorder and record the cache trace
m_cache_recorder = new CacheRecorder(uncompressed_trace, cache_trace_size,
sequencer_map, block_size_bytes);
}
void
RubySystem::memWriteback()
{
m_cooldown_enabled = true;
// Make the trace so we know what to write back.
DPRINTF(RubyCacheTrace, "Recording Cache Trace\n");
makeCacheRecorder(NULL, 0, getBlockSizeBytes());
for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
m_abs_cntrl_vec[cntrl]->recordCacheTrace(cntrl, m_cache_recorder);
}
DPRINTF(RubyCacheTrace, "Cache Trace Complete\n");
// save the current tick value
Tick curtick_original = curTick();
DPRINTF(RubyCacheTrace, "Recording current tick %ld\n", curtick_original);
// Deschedule all prior events on the event queue, but record the tick they
// were scheduled at so they can be restored correctly later.
list<pair<Event*, Tick> > original_events;
while (!eventq->empty()) {
Event *curr_head = eventq->getHead();
if (curr_head->isAutoDelete()) {
DPRINTF(RubyCacheTrace, "Event %s auto-deletes when descheduled,"
" not recording\n", curr_head->name());
} else {
original_events.push_back(make_pair(curr_head, curr_head->when()));
}
eventq->deschedule(curr_head);
}
// Schedule an event to start cache cooldown
DPRINTF(RubyCacheTrace, "Starting cache flush\n");
enqueueRubyEvent(curTick());
simulate();
DPRINTF(RubyCacheTrace, "Cache flush complete\n");
// Deschedule any events left on the event queue.
while (!eventq->empty()) {
eventq->deschedule(eventq->getHead());
}
// Restore curTick
setCurTick(curtick_original);
// Restore all events that were originally on the event queue. This is
// done after setting curTick back to its original value so that events do
// not seem to be scheduled in the past.
while (!original_events.empty()) {
pair<Event*, Tick> event = original_events.back();
eventq->schedule(event.first, event.second);
original_events.pop_back();
}
// No longer flushing back to memory.
m_cooldown_enabled = false;
// There are several issues with continuing simulation after calling
// memWriteback() at the moment, that stem from taking events off the
// queue, simulating again, and then putting them back on, whilst
// pretending that no time has passed. One is that some events will have
// been deleted, so can't be put back. Another is that any object
// recording the tick something happens may end up storing a tick in the
// future. A simple warning here alerts the user that things may not work
// as expected.
warn_once("Ruby memory writeback is experimental. Continuing simulation "
"afterwards may not always work as intended.");
// Keep the cache recorder around so that we can dump the trace if a
// checkpoint is immediately taken.
}
void
RubySystem::writeCompressedTrace(uint8_t *raw_data, string filename,
uint64_t uncompressed_trace_size)
{
// Create the checkpoint file for the memory
string thefile = CheckpointIn::dir() + "/" + filename.c_str();
int fd = creat(thefile.c_str(), 0664);
if (fd < 0) {
perror("creat");
fatal("Can't open memory trace file '%s'\n", filename);
}
gzFile compressedMemory = gzdopen(fd, "wb");
if (compressedMemory == NULL)
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
if (gzwrite(compressedMemory, raw_data, uncompressed_trace_size) !=
uncompressed_trace_size) {
fatal("Write failed on memory trace file '%s'\n", filename);
}
if (gzclose(compressedMemory)) {
fatal("Close failed on memory trace file '%s'\n", filename);
}
delete[] raw_data;
}
void
RubySystem::serialize(CheckpointOut &cp) const
{
// Store the cache-block size, so we are able to restore on systems with a
// different cache-block size. CacheRecorder depends on the correct
// cache-block size upon unserializing.
uint64_t block_size_bytes = getBlockSizeBytes();
SERIALIZE_SCALAR(block_size_bytes);
// Check that there's a valid trace to use. If not, then memory won't be
// up-to-date and the simulation will probably fail when restoring from the
// checkpoint.
if (m_cache_recorder == NULL) {
fatal("Call memWriteback() before serialize() to create ruby trace");
}
// Aggregate the trace entries together into a single array
uint8_t *raw_data = new uint8_t[4096];
uint64_t cache_trace_size = m_cache_recorder->aggregateRecords(&raw_data,
4096);
string cache_trace_file = name() + ".cache.gz";
writeCompressedTrace(raw_data, cache_trace_file, cache_trace_size);
SERIALIZE_SCALAR(cache_trace_file);
SERIALIZE_SCALAR(cache_trace_size);
}
void
RubySystem::drainResume()
{
// Delete the cache recorder if it was created in memWriteback()
// to checkpoint the current cache state.
if (m_cache_recorder) {
delete m_cache_recorder;
m_cache_recorder = NULL;
}
}
void
RubySystem::readCompressedTrace(string filename, uint8_t *&raw_data,
uint64_t &uncompressed_trace_size)
{
// Read the trace file
gzFile compressedTrace;
// trace file
int fd = open(filename.c_str(), O_RDONLY);
if (fd < 0) {
perror("open");
fatal("Unable to open trace file %s", filename);
}
compressedTrace = gzdopen(fd, "rb");
if (compressedTrace == NULL) {
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
}
raw_data = new uint8_t[uncompressed_trace_size];
if (gzread(compressedTrace, raw_data, uncompressed_trace_size) <
uncompressed_trace_size) {
fatal("Unable to read complete trace from file %s\n", filename);
}
if (gzclose(compressedTrace)) {
fatal("Failed to close cache trace file '%s'\n", filename);
}
}
void
RubySystem::unserialize(CheckpointIn &cp)
{
uint8_t *uncompressed_trace = NULL;
// This value should be set to the checkpoint-system's block-size.
// Optional, as checkpoints without it can be run if the
// checkpoint-system's block-size == current block-size.
uint64_t block_size_bytes = getBlockSizeBytes();
UNSERIALIZE_OPT_SCALAR(block_size_bytes);
string cache_trace_file;
uint64_t cache_trace_size = 0;
UNSERIALIZE_SCALAR(cache_trace_file);
UNSERIALIZE_SCALAR(cache_trace_size);
cache_trace_file = cp.cptDir + "/" + cache_trace_file;
readCompressedTrace(cache_trace_file, uncompressed_trace,
cache_trace_size);
m_warmup_enabled = true;
m_systems_to_warmup++;
// Create the cache recorder that will hang around until startup.
makeCacheRecorder(uncompressed_trace, cache_trace_size, block_size_bytes);
}
void
RubySystem::startup()
{
// Ruby restores state from a checkpoint by resetting the clock to 0 and
// playing the requests that can possibly re-generate the cache state.
// The clock value is set to the actual checkpointed value once all the
// requests have been executed.
//
// This way of restoring state is pretty finicky. For example, if a
// Ruby component reads time before the state has been restored, it would
// cache this value and hence its clock would not be reset to 0, when
// Ruby resets the global clock. This can potentially result in a
// deadlock.
//
// The solution is that no Ruby component should read time before the
// simulation starts. And then one also needs to hope that the time
// Ruby finishes restoring the state is less than the time when the
// state was checkpointed.
if (m_warmup_enabled) {
DPRINTF(RubyCacheTrace, "Starting ruby cache warmup\n");
// save the current tick value
Tick curtick_original = curTick();
// save the event queue head
Event* eventq_head = eventq->replaceHead(NULL);
// set curTick to 0 and reset Ruby System's clock
setCurTick(0);
resetClock();
// Schedule an event to start cache warmup
enqueueRubyEvent(curTick());
simulate();
delete m_cache_recorder;
m_cache_recorder = NULL;
m_systems_to_warmup--;
if (m_systems_to_warmup == 0) {
m_warmup_enabled = false;
}
// Restore eventq head
eventq->replaceHead(eventq_head);
// Restore curTick and Ruby System's clock
setCurTick(curtick_original);
resetClock();
}
resetStats();
}
void
RubySystem::processRubyEvent()
{
if (getWarmupEnabled()) {
m_cache_recorder->enqueueNextFetchRequest();
} else if (getCooldownEnabled()) {
m_cache_recorder->enqueueNextFlushRequest();
}
}
void
RubySystem::resetStats()
{
m_start_cycle = curCycle();
}
bool
RubySystem::functionalRead(PacketPtr pkt)
{
Addr address(pkt->getAddr());
Addr line_address = makeLineAddress(address);
AccessPermission access_perm = AccessPermission_NotPresent;
int num_controllers = m_abs_cntrl_vec.size();
DPRINTF(RubySystem, "Functional Read request for %#x\n", address);
unsigned int num_ro = 0;
unsigned int num_rw = 0;
unsigned int num_busy = 0;
unsigned int num_backing_store = 0;
unsigned int num_invalid = 0;
// In this loop we count the number of controllers that have the given
// address in read only, read write and busy states.
for (unsigned int i = 0; i < num_controllers; ++i) {
access_perm = m_abs_cntrl_vec[i]-> getAccessPermission(line_address);
if (access_perm == AccessPermission_Read_Only)
num_ro++;
else if (access_perm == AccessPermission_Read_Write)
num_rw++;
else if (access_perm == AccessPermission_Busy)
num_busy++;
else if (access_perm == AccessPermission_Backing_Store)
// See RubySlicc_Exports.sm for details, but Backing_Store is meant
// to represent blocks in memory *for Broadcast/Snooping protocols*,
// where memory has no idea whether it has an exclusive copy of data
// or not.
num_backing_store++;
else if (access_perm == AccessPermission_Invalid ||
access_perm == AccessPermission_NotPresent)
num_invalid++;
}
assert(num_rw <= 1);
// This if case is meant to capture what happens in a Broadcast/Snoop
// protocol where the block does not exist in the cache hierarchy. You
// only want to read from the Backing_Store memory if there is no copy in
// the cache hierarchy, otherwise you want to try to read the RO or RW
// copies existing in the cache hierarchy (covered by the else statement).
// The reason is because the Backing_Store memory could easily be stale, if
// there are copies floating around the cache hierarchy, so you want to read
// it only if it's not in the cache hierarchy at all.
if (num_invalid == (num_controllers - 1) && num_backing_store == 1) {
DPRINTF(RubySystem, "only copy in Backing_Store memory, read from it\n");
for (unsigned int i = 0; i < num_controllers; ++i) {
access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_address);
if (access_perm == AccessPermission_Backing_Store) {
m_abs_cntrl_vec[i]->functionalRead(line_address, pkt);
return true;
}
}
} else if (num_ro > 0 || num_rw == 1) {
// In Broadcast/Snoop protocols, this covers if you know the block
// exists somewhere in the caching hierarchy, then you want to read any
// valid RO or RW block. In directory protocols, same thing, you want
// to read any valid readable copy of the block.
DPRINTF(RubySystem, "num_busy = %d, num_ro = %d, num_rw = %d\n",
num_busy, num_ro, num_rw);
// In this loop, we try to figure which controller has a read only or
// a read write copy of the given address. Any valid copy would suffice
// for a functional read.
for (unsigned int i = 0;i < num_controllers;++i) {
access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_address);
if (access_perm == AccessPermission_Read_Only ||
access_perm == AccessPermission_Read_Write) {
m_abs_cntrl_vec[i]->functionalRead(line_address, pkt);
return true;
}
}
}
return false;
}
// The function searches through all the buffers that exist in different
// cache, directory and memory controllers, and in the network components
// and writes the data portion of those that hold the address specified
// in the packet.
bool
RubySystem::functionalWrite(PacketPtr pkt)
{
Addr addr(pkt->getAddr());
Addr line_addr = makeLineAddress(addr);
AccessPermission access_perm = AccessPermission_NotPresent;
int num_controllers = m_abs_cntrl_vec.size();
DPRINTF(RubySystem, "Functional Write request for %#x\n", addr);
uint32_t M5_VAR_USED num_functional_writes = 0;
for (unsigned int i = 0; i < num_controllers;++i) {
num_functional_writes +=
m_abs_cntrl_vec[i]->functionalWriteBuffers(pkt);
access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_addr);
if (access_perm != AccessPermission_Invalid &&
access_perm != AccessPermission_NotPresent) {
num_functional_writes +=
m_abs_cntrl_vec[i]->functionalWrite(line_addr, pkt);
}
}
num_functional_writes += m_network->functionalWrite(pkt);
DPRINTF(RubySystem, "Messages written = %u\n", num_functional_writes);
return true;
}
RubySystem *
RubySystemParams::create()
{
return new RubySystem(this);
}