blob: f4b2bb58da945804b8856e2ce159f3785c7f53f9 [file] [log] [blame]
/*
* Copyright (c) 2019-2021 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mem/ruby/network/MessageBuffer.hh"
#include <cassert>
#include "base/cprintf.hh"
#include "base/logging.hh"
#include "base/random.hh"
#include "base/stl_helpers.hh"
#include "debug/RubyQueue.hh"
#include "mem/ruby/system/RubySystem.hh"
namespace gem5
{
namespace ruby
{
using stl_helpers::operator<<;
MessageBuffer::MessageBuffer(const Params &p)
: SimObject(p), m_stall_map_size(0),
m_max_size(p.buffer_size), m_time_last_time_size_checked(0),
m_time_last_time_enqueue(0), m_time_last_time_pop(0),
m_last_arrival_time(0), m_strict_fifo(p.ordered),
m_randomization(p.randomization),
m_allow_zero_latency(p.allow_zero_latency),
ADD_STAT(m_not_avail_count, "Number of times this buffer did not have "
"N slots available"),
ADD_STAT(m_buf_msgs, "Average number of messages in buffer"),
ADD_STAT(m_stall_time, "Average number of cycles messages are stalled in "
"this MB"),
ADD_STAT(m_stall_count, "Number of times messages were stalled"),
ADD_STAT(m_occupancy, "Average occupancy of buffer capacity")
{
m_msg_counter = 0;
m_consumer = NULL;
m_size_last_time_size_checked = 0;
m_size_at_cycle_start = 0;
m_stalled_at_cycle_start = 0;
m_msgs_this_cycle = 0;
m_priority_rank = 0;
m_stall_msg_map.clear();
m_input_link_id = 0;
m_vnet_id = 0;
m_buf_msgs = 0;
m_stall_time = 0;
m_dequeue_callback = nullptr;
// stats
m_not_avail_count
.flags(statistics::nozero);
m_buf_msgs
.flags(statistics::nozero);
m_stall_count
.flags(statistics::nozero);
m_occupancy
.flags(statistics::nozero);
m_stall_time
.flags(statistics::nozero);
if (m_max_size > 0) {
m_occupancy = m_buf_msgs / m_max_size;
} else {
m_occupancy = 0;
}
}
unsigned int
MessageBuffer::getSize(Tick curTime)
{
if (m_time_last_time_size_checked != curTime) {
m_time_last_time_size_checked = curTime;
m_size_last_time_size_checked = m_prio_heap.size();
}
return m_size_last_time_size_checked;
}
bool
MessageBuffer::areNSlotsAvailable(unsigned int n, Tick current_time)
{
// fast path when message buffers have infinite size
if (m_max_size == 0) {
return true;
}
// determine the correct size for the current cycle
// pop operations shouldn't effect the network's visible size
// until schd cycle, but enqueue operations effect the visible
// size immediately
unsigned int current_size = 0;
unsigned int current_stall_size = 0;
if (m_time_last_time_pop < current_time) {
// no pops this cycle - heap and stall queue size is correct
current_size = m_prio_heap.size();
current_stall_size = m_stall_map_size;
} else {
if (m_time_last_time_enqueue < current_time) {
// no enqueues this cycle - m_size_at_cycle_start is correct
current_size = m_size_at_cycle_start;
} else {
// both pops and enqueues occured this cycle - add new
// enqueued msgs to m_size_at_cycle_start
current_size = m_size_at_cycle_start + m_msgs_this_cycle;
}
// Stall queue size at start is considered
current_stall_size = m_stalled_at_cycle_start;
}
// now compare the new size with our max size
if (current_size + current_stall_size + n <= m_max_size) {
return true;
} else {
DPRINTF(RubyQueue, "n: %d, current_size: %d, heap size: %d, "
"m_max_size: %d\n",
n, current_size + current_stall_size,
m_prio_heap.size(), m_max_size);
m_not_avail_count++;
return false;
}
}
const Message*
MessageBuffer::peek() const
{
DPRINTF(RubyQueue, "Peeking at head of queue.\n");
const Message* msg_ptr = m_prio_heap.front().get();
assert(msg_ptr);
DPRINTF(RubyQueue, "Message: %s\n", (*msg_ptr));
return msg_ptr;
}
// FIXME - move me somewhere else
Tick
random_time()
{
Tick time = 1;
time += random_mt.random(0, 3); // [0...3]
if (random_mt.random(0, 7) == 0) { // 1 in 8 chance
time += 100 + random_mt.random(1, 15); // 100 + [1...15]
}
return time;
}
void
MessageBuffer::enqueue(MsgPtr message, Tick current_time, Tick delta)
{
// record current time incase we have a pop that also adjusts my size
if (m_time_last_time_enqueue < current_time) {
m_msgs_this_cycle = 0; // first msg this cycle
m_time_last_time_enqueue = current_time;
}
m_msg_counter++;
m_msgs_this_cycle++;
// Calculate the arrival time of the message, that is, the first
// cycle the message can be dequeued.
panic_if((delta == 0) && !m_allow_zero_latency,
"Delta equals zero and allow_zero_latency is false during enqueue");
Tick arrival_time = 0;
// random delays are inserted if the RubySystem level randomization flag
// is turned on and this buffer allows it
if ((m_randomization == MessageRandomization::disabled) ||
((m_randomization == MessageRandomization::ruby_system) &&
!RubySystem::getRandomization())) {
// No randomization
arrival_time = current_time + delta;
} else {
// Randomization - ignore delta
if (m_strict_fifo) {
if (m_last_arrival_time < current_time) {
m_last_arrival_time = current_time;
}
arrival_time = m_last_arrival_time + random_time();
} else {
arrival_time = current_time + random_time();
}
}
// Check the arrival time
assert(arrival_time >= current_time);
if (m_strict_fifo) {
if (arrival_time < m_last_arrival_time) {
panic("FIFO ordering violated: %s name: %s current time: %d "
"delta: %d arrival_time: %d last arrival_time: %d\n",
*this, name(), current_time, delta, arrival_time,
m_last_arrival_time);
}
}
// If running a cache trace, don't worry about the last arrival checks
if (!RubySystem::getWarmupEnabled()) {
m_last_arrival_time = arrival_time;
}
// compute the delay cycles and set enqueue time
Message* msg_ptr = message.get();
assert(msg_ptr != NULL);
assert(current_time >= msg_ptr->getLastEnqueueTime() &&
"ensure we aren't dequeued early");
msg_ptr->updateDelayedTicks(current_time);
msg_ptr->setLastEnqueueTime(arrival_time);
msg_ptr->setMsgCounter(m_msg_counter);
// Insert the message into the priority heap
m_prio_heap.push_back(message);
push_heap(m_prio_heap.begin(), m_prio_heap.end(), std::greater<MsgPtr>());
// Increment the number of messages statistic
m_buf_msgs++;
assert((m_max_size == 0) ||
((m_prio_heap.size() + m_stall_map_size) <= m_max_size));
DPRINTF(RubyQueue, "Enqueue arrival_time: %lld, Message: %s\n",
arrival_time, *(message.get()));
// Schedule the wakeup
assert(m_consumer != NULL);
m_consumer->scheduleEventAbsolute(arrival_time);
m_consumer->storeEventInfo(m_vnet_id);
}
Tick
MessageBuffer::dequeue(Tick current_time, bool decrement_messages)
{
DPRINTF(RubyQueue, "Popping\n");
assert(isReady(current_time));
// get MsgPtr of the message about to be dequeued
MsgPtr message = m_prio_heap.front();
// get the delay cycles
message->updateDelayedTicks(current_time);
Tick delay = message->getDelayedTicks();
m_stall_time = curTick() - message->getTime();
// record previous size and time so the current buffer size isn't
// adjusted until schd cycle
if (m_time_last_time_pop < current_time) {
m_size_at_cycle_start = m_prio_heap.size();
m_stalled_at_cycle_start = m_stall_map_size;
m_time_last_time_pop = current_time;
}
pop_heap(m_prio_heap.begin(), m_prio_heap.end(), std::greater<MsgPtr>());
m_prio_heap.pop_back();
if (decrement_messages) {
// If the message will be removed from the queue, decrement the
// number of message in the queue.
m_buf_msgs--;
}
// if a dequeue callback was requested, call it now
if (m_dequeue_callback) {
m_dequeue_callback();
}
return delay;
}
void
MessageBuffer::registerDequeueCallback(std::function<void()> callback)
{
m_dequeue_callback = callback;
}
void
MessageBuffer::unregisterDequeueCallback()
{
m_dequeue_callback = nullptr;
}
void
MessageBuffer::clear()
{
m_prio_heap.clear();
m_msg_counter = 0;
m_time_last_time_enqueue = 0;
m_time_last_time_pop = 0;
m_size_at_cycle_start = 0;
m_stalled_at_cycle_start = 0;
m_msgs_this_cycle = 0;
}
void
MessageBuffer::recycle(Tick current_time, Tick recycle_latency)
{
DPRINTF(RubyQueue, "Recycling.\n");
assert(isReady(current_time));
MsgPtr node = m_prio_heap.front();
pop_heap(m_prio_heap.begin(), m_prio_heap.end(), std::greater<MsgPtr>());
Tick future_time = current_time + recycle_latency;
node->setLastEnqueueTime(future_time);
m_prio_heap.back() = node;
push_heap(m_prio_heap.begin(), m_prio_heap.end(), std::greater<MsgPtr>());
m_consumer->scheduleEventAbsolute(future_time);
}
void
MessageBuffer::reanalyzeList(std::list<MsgPtr> &lt, Tick schdTick)
{
while (!lt.empty()) {
MsgPtr m = lt.front();
assert(m->getLastEnqueueTime() <= schdTick);
m_prio_heap.push_back(m);
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
std::greater<MsgPtr>());
m_consumer->scheduleEventAbsolute(schdTick);
DPRINTF(RubyQueue, "Requeue arrival_time: %lld, Message: %s\n",
schdTick, *(m.get()));
lt.pop_front();
}
}
void
MessageBuffer::reanalyzeMessages(Addr addr, Tick current_time)
{
DPRINTF(RubyQueue, "ReanalyzeMessages %#x\n", addr);
assert(m_stall_msg_map.count(addr) > 0);
//
// Put all stalled messages associated with this address back on the
// prio heap. The reanalyzeList call will make sure the consumer is
// scheduled for the current cycle so that the previously stalled messages
// will be observed before any younger messages that may arrive this cycle
//
m_stall_map_size -= m_stall_msg_map[addr].size();
assert(m_stall_map_size >= 0);
reanalyzeList(m_stall_msg_map[addr], current_time);
m_stall_msg_map.erase(addr);
}
void
MessageBuffer::reanalyzeAllMessages(Tick current_time)
{
DPRINTF(RubyQueue, "ReanalyzeAllMessages\n");
//
// Put all stalled messages associated with this address back on the
// prio heap. The reanalyzeList call will make sure the consumer is
// scheduled for the current cycle so that the previously stalled messages
// will be observed before any younger messages that may arrive this cycle.
//
for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
map_iter != m_stall_msg_map.end(); ++map_iter) {
m_stall_map_size -= map_iter->second.size();
assert(m_stall_map_size >= 0);
reanalyzeList(map_iter->second, current_time);
}
m_stall_msg_map.clear();
}
void
MessageBuffer::stallMessage(Addr addr, Tick current_time)
{
DPRINTF(RubyQueue, "Stalling due to %#x\n", addr);
assert(isReady(current_time));
assert(getOffset(addr) == 0);
MsgPtr message = m_prio_heap.front();
// Since the message will just be moved to stall map, indicate that the
// buffer should not decrement the m_buf_msgs statistic
dequeue(current_time, false);
//
// Note: no event is scheduled to analyze the map at a later time.
// Instead the controller is responsible to call reanalyzeMessages when
// these addresses change state.
//
(m_stall_msg_map[addr]).push_back(message);
m_stall_map_size++;
m_stall_count++;
}
bool
MessageBuffer::hasStalledMsg(Addr addr) const
{
return (m_stall_msg_map.count(addr) != 0);
}
void
MessageBuffer::deferEnqueueingMessage(Addr addr, MsgPtr message)
{
DPRINTF(RubyQueue, "Deferring enqueueing message: %s, Address %#x\n",
*(message.get()), addr);
(m_deferred_msg_map[addr]).push_back(message);
}
void
MessageBuffer::enqueueDeferredMessages(Addr addr, Tick curTime, Tick delay)
{
assert(!isDeferredMsgMapEmpty(addr));
std::vector<MsgPtr>& msg_vec = m_deferred_msg_map[addr];
assert(msg_vec.size() > 0);
// enqueue all deferred messages associated with this address
for (MsgPtr m : msg_vec) {
enqueue(m, curTime, delay);
}
msg_vec.clear();
m_deferred_msg_map.erase(addr);
}
bool
MessageBuffer::isDeferredMsgMapEmpty(Addr addr) const
{
return m_deferred_msg_map.count(addr) == 0;
}
void
MessageBuffer::print(std::ostream& out) const
{
ccprintf(out, "[MessageBuffer: ");
if (m_consumer != NULL) {
ccprintf(out, " consumer-yes ");
}
std::vector<MsgPtr> copy(m_prio_heap);
std::sort_heap(copy.begin(), copy.end(), std::greater<MsgPtr>());
ccprintf(out, "%s] %s", copy, name());
}
bool
MessageBuffer::isReady(Tick current_time) const
{
return ((m_prio_heap.size() > 0) &&
(m_prio_heap.front()->getLastEnqueueTime() <= current_time));
}
uint32_t
MessageBuffer::functionalAccess(Packet *pkt, bool is_read, WriteMask *mask)
{
DPRINTF(RubyQueue, "functional %s for %#x\n",
is_read ? "read" : "write", pkt->getAddr());
uint32_t num_functional_accesses = 0;
// Check the priority heap and write any messages that may
// correspond to the address in the packet.
for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
Message *msg = m_prio_heap[i].get();
if (is_read && !mask && msg->functionalRead(pkt))
return 1;
else if (is_read && mask && msg->functionalRead(pkt, *mask))
num_functional_accesses++;
else if (!is_read && msg->functionalWrite(pkt))
num_functional_accesses++;
}
// Check the stall queue and write any messages that may
// correspond to the address in the packet.
for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
map_iter != m_stall_msg_map.end();
++map_iter) {
for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
it != (map_iter->second).end(); ++it) {
Message *msg = (*it).get();
if (is_read && !mask && msg->functionalRead(pkt))
return 1;
else if (is_read && mask && msg->functionalRead(pkt, *mask))
num_functional_accesses++;
else if (!is_read && msg->functionalWrite(pkt))
num_functional_accesses++;
}
}
return num_functional_accesses;
}
} // namespace ruby
} // namespace gem5