blob: 3a7852f7989bffb262027118e119a7510d1d7eb4 [file] [log] [blame]
/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_BASE_DYN_INST_HH__
#define __CPU_BASE_DYN_INST_HH__
#include <string>
#include <vector>
#include "base/fast_alloc.hh"
#include "base/trace.hh"
#include "config/full_system.hh"
#include "cpu/exetrace.hh"
#include "cpu/inst_seq.hh"
#include "cpu/o3/comm.hh"
#include "cpu/static_inst.hh"
#include "encumbered/cpu/full/bpred_update.hh"
#include "encumbered/cpu/full/op_class.hh"
#include "encumbered/cpu/full/spec_memory.hh"
#include "encumbered/cpu/full/spec_state.hh"
#include "encumbered/mem/functional/main.hh"
/**
* @file
* Defines a dynamic instruction context.
*/
// Forward declaration.
class StaticInstPtr;
template <class Impl>
class BaseDynInst : public FastAlloc, public RefCounted
{
public:
// Typedef for the CPU.
typedef typename Impl::FullCPU FullCPU;
/// Binary machine instruction type.
typedef TheISA::MachInst MachInst;
/// Logical register index type.
typedef TheISA::RegIndex RegIndex;
/// Integer register index type.
typedef TheISA::IntReg IntReg;
enum {
MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
};
/** The static inst used by this dyn inst. */
StaticInstPtr staticInst;
////////////////////////////////////////////
//
// INSTRUCTION EXECUTION
//
////////////////////////////////////////////
Trace::InstRecord *traceData;
template <class T>
Fault read(Addr addr, T &data, unsigned flags);
template <class T>
Fault write(T data, Addr addr, unsigned flags,
uint64_t *res);
void prefetch(Addr addr, unsigned flags);
void writeHint(Addr addr, int size, unsigned flags);
Fault copySrcTranslate(Addr src);
Fault copy(Addr dest);
/** @todo: Consider making this private. */
public:
/** Is this instruction valid. */
bool valid;
/** The sequence number of the instruction. */
InstSeqNum seqNum;
/** How many source registers are ready. */
unsigned readyRegs;
/** Is the instruction completed. */
bool completed;
/** Can this instruction issue. */
bool canIssue;
/** Has this instruction issued. */
bool issued;
/** Has this instruction executed (or made it through execute) yet. */
bool executed;
/** Can this instruction commit. */
bool canCommit;
/** Is this instruction squashed. */
bool squashed;
/** Is this instruction squashed in the instruction queue. */
bool squashedInIQ;
/** Is this a recover instruction. */
bool recoverInst;
/** Is this a thread blocking instruction. */
bool blockingInst; /* this inst has called thread_block() */
/** Is this a thread syncrhonization instruction. */
bool threadsyncWait;
/** The thread this instruction is from. */
short threadNumber;
/** data address space ID, for loads & stores. */
short asid;
/** Pointer to the FullCPU object. */
FullCPU *cpu;
/** Pointer to the exec context. Will not exist in the final version. */
CPUExecContext *cpuXC;
/** The kind of fault this instruction has generated. */
Fault fault;
/** The effective virtual address (lds & stores only). */
Addr effAddr;
/** The effective physical address. */
Addr physEffAddr;
/** Effective virtual address for a copy source. */
Addr copySrcEffAddr;
/** Effective physical address for a copy source. */
Addr copySrcPhysEffAddr;
/** The memory request flags (from translation). */
unsigned memReqFlags;
/** The size of the data to be stored. */
int storeSize;
/** The data to be stored. */
IntReg storeData;
union Result {
uint64_t integer;
float fp;
double dbl;
};
/** The result of the instruction; assumes for now that there's only one
* destination register.
*/
Result instResult;
/** PC of this instruction. */
Addr PC;
/** Next non-speculative PC. It is not filled in at fetch, but rather
* once the target of the branch is truly known (either decode or
* execute).
*/
Addr nextPC;
/** Predicted next PC. */
Addr predPC;
/** Count of total number of dynamic instructions. */
static int instcount;
/** Whether or not the source register is ready. Not sure this should be
* here vs. the derived class.
*/
bool _readySrcRegIdx[MaxInstSrcRegs];
public:
/** BaseDynInst constructor given a binary instruction. */
BaseDynInst(MachInst inst, Addr PC, Addr Pred_PC, InstSeqNum seq_num,
FullCPU *cpu);
/** BaseDynInst constructor given a static inst pointer. */
BaseDynInst(StaticInstPtr &_staticInst);
/** BaseDynInst destructor. */
~BaseDynInst();
private:
/** Function to initialize variables in the constructors. */
void initVars();
public:
void
trace_mem(Fault fault, // last fault
MemCmd cmd, // last command
Addr addr, // virtual address of access
void *p, // memory accessed
int nbytes); // access size
/** Dumps out contents of this BaseDynInst. */
void dump();
/** Dumps out contents of this BaseDynInst into given string. */
void dump(std::string &outstring);
/** Returns the fault type. */
Fault getFault() { return fault; }
/** Checks whether or not this instruction has had its branch target
* calculated yet. For now it is not utilized and is hacked to be
* always false.
*/
bool doneTargCalc() { return false; }
/** Returns the next PC. This could be the speculative next PC if it is
* called prior to the actual branch target being calculated.
*/
Addr readNextPC() { return nextPC; }
/** Set the predicted target of this current instruction. */
void setPredTarg(Addr predicted_PC) { predPC = predicted_PC; }
/** Returns the predicted target of the branch. */
Addr readPredTarg() { return predPC; }
/** Returns whether the instruction was predicted taken or not. */
bool predTaken() {
return( predPC != (PC + sizeof(MachInst) ) );
}
/** Returns whether the instruction mispredicted. */
bool mispredicted() { return (predPC != nextPC); }
//
// Instruction types. Forward checks to StaticInst object.
//
bool isNop() const { return staticInst->isNop(); }
bool isMemRef() const { return staticInst->isMemRef(); }
bool isLoad() const { return staticInst->isLoad(); }
bool isStore() const { return staticInst->isStore(); }
bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
bool isCopy() const { return staticInst->isCopy(); }
bool isInteger() const { return staticInst->isInteger(); }
bool isFloating() const { return staticInst->isFloating(); }
bool isControl() const { return staticInst->isControl(); }
bool isCall() const { return staticInst->isCall(); }
bool isReturn() const { return staticInst->isReturn(); }
bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
bool isCondCtrl() const { return staticInst->isCondCtrl(); }
bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
bool isThreadSync() const { return staticInst->isThreadSync(); }
bool isSerializing() const { return staticInst->isSerializing(); }
bool isMemBarrier() const { return staticInst->isMemBarrier(); }
bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
/** Returns the opclass of this instruction. */
OpClass opClass() const { return staticInst->opClass(); }
/** Returns the branch target address. */
Addr branchTarget() const { return staticInst->branchTarget(PC); }
/** Number of source registers. */
int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
/** Number of destination registers. */
int8_t numDestRegs() const { return staticInst->numDestRegs(); }
// the following are used to track physical register usage
// for machines with separate int & FP reg files
int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
/** Returns the logical register index of the i'th destination register. */
RegIndex destRegIdx(int i) const
{
return staticInst->destRegIdx(i);
}
/** Returns the logical register index of the i'th source register. */
RegIndex srcRegIdx(int i) const
{
return staticInst->srcRegIdx(i);
}
/** Returns the result of an integer instruction. */
uint64_t readIntResult() { return instResult.integer; }
/** Returns the result of a floating point instruction. */
float readFloatResult() { return instResult.fp; }
/** Returns the result of a floating point (double) instruction. */
double readDoubleResult() { return instResult.dbl; }
//Push to .cc file.
/** Records that one of the source registers is ready. */
void markSrcRegReady()
{
++readyRegs;
if(readyRegs == numSrcRegs()) {
canIssue = true;
}
}
/** Marks a specific register as ready.
* @todo: Move this to .cc file.
*/
void markSrcRegReady(RegIndex src_idx)
{
++readyRegs;
_readySrcRegIdx[src_idx] = 1;
if(readyRegs == numSrcRegs()) {
canIssue = true;
}
}
/** Returns if a source register is ready. */
bool isReadySrcRegIdx(int idx) const
{
return this->_readySrcRegIdx[idx];
}
/** Sets this instruction as completed. */
void setCompleted() { completed = true; }
/** Returns whethe or not this instruction is completed. */
bool isCompleted() const { return completed; }
/** Sets this instruction as ready to issue. */
void setCanIssue() { canIssue = true; }
/** Returns whether or not this instruction is ready to issue. */
bool readyToIssue() const { return canIssue; }
/** Sets this instruction as issued from the IQ. */
void setIssued() { issued = true; }
/** Returns whether or not this instruction has issued. */
bool isIssued() const { return issued; }
/** Sets this instruction as executed. */
void setExecuted() { executed = true; }
/** Returns whether or not this instruction has executed. */
bool isExecuted() const { return executed; }
/** Sets this instruction as ready to commit. */
void setCanCommit() { canCommit = true; }
/** Clears this instruction as being ready to commit. */
void clearCanCommit() { canCommit = false; }
/** Returns whether or not this instruction is ready to commit. */
bool readyToCommit() const { return canCommit; }
/** Sets this instruction as squashed. */
void setSquashed() { squashed = true; }
/** Returns whether or not this instruction is squashed. */
bool isSquashed() const { return squashed; }
/** Sets this instruction as squashed in the IQ. */
void setSquashedInIQ() { squashedInIQ = true; }
/** Returns whether or not this instruction is squashed in the IQ. */
bool isSquashedInIQ() const { return squashedInIQ; }
/** Read the PC of this instruction. */
const Addr readPC() const { return PC; }
/** Set the next PC of this instruction (its actual target). */
void setNextPC(uint64_t val) { nextPC = val; }
/** Returns the exec context.
* @todo: Remove this once the ExecContext is no longer used.
*/
ExecContext *xcBase() { return cpuXC->getProxy(); }
private:
/** Instruction effective address.
* @todo: Consider if this is necessary or not.
*/
Addr instEffAddr;
/** Whether or not the effective address calculation is completed.
* @todo: Consider if this is necessary or not.
*/
bool eaCalcDone;
public:
/** Sets the effective address. */
void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
/** Returns the effective address. */
const Addr &getEA() const { return instEffAddr; }
/** Returns whether or not the eff. addr. calculation has been completed. */
bool doneEACalc() { return eaCalcDone; }
/** Returns whether or not the eff. addr. source registers are ready. */
bool eaSrcsReady();
public:
/** Load queue index. */
int16_t lqIdx;
/** Store queue index. */
int16_t sqIdx;
};
template<class Impl>
template<class T>
inline Fault
BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
{
MemReqPtr req = new MemReq(addr, cpuXC->getProxy(), sizeof(T), flags);
req->asid = asid;
fault = cpu->translateDataReadReq(req);
// Record key MemReq parameters so we can generate another one
// just like it for the timing access without calling translate()
// again (which might mess up the TLB).
// Do I ever really need this? -KTL 3/05
effAddr = req->vaddr;
physEffAddr = req->paddr;
memReqFlags = req->flags;
/**
* @todo
* Replace the disjoint functional memory with a unified one and remove
* this hack.
*/
#if !FULL_SYSTEM
req->paddr = req->vaddr;
#endif
if (fault == NoFault) {
fault = cpu->read(req, data, lqIdx);
} else {
// Return a fixed value to keep simulation deterministic even
// along misspeculated paths.
data = (T)-1;
}
if (traceData) {
traceData->setAddr(addr);
traceData->setData(data);
}
return fault;
}
template<class Impl>
template<class T>
inline Fault
BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
if (traceData) {
traceData->setAddr(addr);
traceData->setData(data);
}
MemReqPtr req = new MemReq(addr, cpuXC->getProxy(), sizeof(T), flags);
req->asid = asid;
fault = cpu->translateDataWriteReq(req);
// Record key MemReq parameters so we can generate another one
// just like it for the timing access without calling translate()
// again (which might mess up the TLB).
effAddr = req->vaddr;
physEffAddr = req->paddr;
memReqFlags = req->flags;
/**
* @todo
* Replace the disjoint functional memory with a unified one and remove
* this hack.
*/
#if !FULL_SYSTEM
req->paddr = req->vaddr;
#endif
if (fault == NoFault) {
fault = cpu->write(req, data, sqIdx);
}
if (res) {
// always return some result to keep misspeculated paths
// (which will ignore faults) deterministic
*res = (fault == NoFault) ? req->result : 0;
}
return fault;
}
#endif // __CPU_BASE_DYN_INST_HH__