blob: e9422b9c051c5a09afb2083cfd17d9ace37a46e2 [file] [log] [blame]
/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/utility.hh"
#include "cpu/exetrace.hh"
#include "cpu/simple/atomic.hh"
#include "mem/packet_impl.hh"
#include "sim/builder.hh"
using namespace std;
using namespace TheISA;
AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
: Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
{
}
void
AtomicSimpleCPU::TickEvent::process()
{
cpu->tick();
}
const char *
AtomicSimpleCPU::TickEvent::description()
{
return "AtomicSimpleCPU tick event";
}
void
AtomicSimpleCPU::init()
{
//Create Memory Ports (conect them up)
Port *mem_dport = mem->getPort("");
dcachePort.setPeer(mem_dport);
mem_dport->setPeer(&dcachePort);
Port *mem_iport = mem->getPort("");
icachePort.setPeer(mem_iport);
mem_iport->setPeer(&icachePort);
BaseCPU::init();
#if FULL_SYSTEM
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
// initialize CPU, including PC
TheISA::initCPU(xc, xc->readCpuId());
}
#endif
}
bool
AtomicSimpleCPU::CpuPort::recvTiming(Packet *pkt)
{
panic("AtomicSimpleCPU doesn't expect recvAtomic callback!");
return true;
}
Tick
AtomicSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
{
panic("AtomicSimpleCPU doesn't expect recvAtomic callback!");
return curTick;
}
void
AtomicSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
{
panic("AtomicSimpleCPU doesn't expect recvFunctional callback!");
}
void
AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
{
if (status == RangeChange)
return;
panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
}
Packet *
AtomicSimpleCPU::CpuPort::recvRetry()
{
panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
return NULL;
}
AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
: BaseSimpleCPU(p), tickEvent(this),
width(p->width), simulate_stalls(p->simulate_stalls),
icachePort(this), dcachePort(this)
{
_status = Idle;
ifetch_req = new Request(true);
ifetch_req->setAsid(0);
// @todo fix me and get the real cpu iD!!!
ifetch_req->setCpuNum(0);
ifetch_req->setSize(sizeof(MachInst));
ifetch_pkt = new Packet;
ifetch_pkt->cmd = Read;
ifetch_pkt->dataStatic(&inst);
ifetch_pkt->req = ifetch_req;
ifetch_pkt->size = sizeof(MachInst);
ifetch_pkt->dest = Packet::Broadcast;
data_read_req = new Request(true);
// @todo fix me and get the real cpu iD!!!
data_read_req->setCpuNum(0);
data_read_req->setAsid(0);
data_read_pkt = new Packet;
data_read_pkt->cmd = Read;
data_read_pkt->dataStatic(&dataReg);
data_read_pkt->req = data_read_req;
data_read_pkt->dest = Packet::Broadcast;
data_write_req = new Request(true);
// @todo fix me and get the real cpu iD!!!
data_write_req->setCpuNum(0);
data_write_req->setAsid(0);
data_write_pkt = new Packet;
data_write_pkt->cmd = Write;
data_write_pkt->req = data_write_req;
data_write_pkt->dest = Packet::Broadcast;
}
AtomicSimpleCPU::~AtomicSimpleCPU()
{
}
void
AtomicSimpleCPU::serialize(ostream &os)
{
BaseSimpleCPU::serialize(os);
SERIALIZE_ENUM(_status);
nameOut(os, csprintf("%s.tickEvent", name()));
tickEvent.serialize(os);
}
void
AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
BaseSimpleCPU::unserialize(cp, section);
UNSERIALIZE_ENUM(_status);
tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
}
void
AtomicSimpleCPU::switchOut(Sampler *s)
{
sampler = s;
if (status() == Running) {
_status = SwitchedOut;
tickEvent.squash();
}
sampler->signalSwitched();
}
void
AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU);
assert(!tickEvent.scheduled());
// if any of this CPU's ExecContexts are active, mark the CPU as
// running and schedule its tick event.
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
if (xc->status() == ExecContext::Active && _status != Running) {
_status = Running;
tickEvent.schedule(curTick);
break;
}
}
}
void
AtomicSimpleCPU::activateContext(int thread_num, int delay)
{
assert(thread_num == 0);
assert(cpuXC);
assert(_status == Idle);
assert(!tickEvent.scheduled());
notIdleFraction++;
tickEvent.schedule(curTick + cycles(delay));
_status = Running;
}
void
AtomicSimpleCPU::suspendContext(int thread_num)
{
assert(thread_num == 0);
assert(cpuXC);
assert(_status == Running);
// tick event may not be scheduled if this gets called from inside
// an instruction's execution, e.g. "quiesce"
if (tickEvent.scheduled())
tickEvent.deschedule();
notIdleFraction--;
_status = Idle;
}
template <class T>
Fault
AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
{
data_read_req->setVaddr(addr);
data_read_req->setSize(sizeof(T));
data_read_req->setFlags(flags);
data_read_req->setTime(curTick);
if (traceData) {
traceData->setAddr(addr);
}
// translate to physical address
Fault fault = cpuXC->translateDataReadReq(data_read_req);
// Now do the access.
if (fault == NoFault) {
data_read_pkt->reset();
data_read_pkt->addr = data_read_req->getPaddr();
data_read_pkt->size = sizeof(T);
dcache_complete = dcachePort.sendAtomic(data_read_pkt);
dcache_access = true;
assert(data_read_pkt->result == Success);
data = data_read_pkt->get<T>();
}
// This will need a new way to tell if it has a dcache attached.
if (data_read_req->getFlags() & UNCACHEABLE)
recordEvent("Uncached Read");
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
data_write_req->setVaddr(addr);
data_write_req->setTime(curTick);
data_write_req->setSize(sizeof(T));
data_write_req->setFlags(flags);
if (traceData) {
traceData->setAddr(addr);
}
// translate to physical address
Fault fault = cpuXC->translateDataWriteReq(data_write_req);
// Now do the access.
if (fault == NoFault) {
data_write_pkt->reset();
data = htog(data);
data_write_pkt->dataStatic(&data);
data_write_pkt->addr = data_write_req->getPaddr();
data_write_pkt->size = sizeof(T);
dcache_complete = dcachePort.sendAtomic(data_write_pkt);
dcache_access = true;
assert(data_write_pkt->result == Success);
if (res && data_write_req->getFlags() & LOCKED) {
*res = data_write_req->getScResult();
}
}
// This will need a new way to tell if it's hooked up to a cache or not.
if (data_write_req->getFlags() & UNCACHEABLE)
recordEvent("Uncached Write");
// If the write needs to have a fault on the access, consider calling
// changeStatus() and changing it to "bad addr write" or something.
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
AtomicSimpleCPU::write(uint64_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint32_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint16_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint8_t data, Addr addr,
unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
void
AtomicSimpleCPU::tick()
{
Tick latency = cycles(1); // instruction takes one cycle by default
for (int i = 0; i < width; ++i) {
numCycles++;
checkForInterrupts();
ifetch_req->resetMin();
ifetch_pkt->reset();
Fault fault = setupFetchPacket(ifetch_pkt);
if (fault == NoFault) {
Tick icache_complete = icachePort.sendAtomic(ifetch_pkt);
// ifetch_req is initialized to read the instruction directly
// into the CPU object's inst field.
dcache_access = false; // assume no dcache access
preExecute();
fault = curStaticInst->execute(this, traceData);
postExecute();
if (traceData) {
traceData->finalize();
}
if (simulate_stalls) {
// This calculation assumes that the icache and dcache
// access latencies are always a multiple of the CPU's
// cycle time. If not, the next tick event may get
// scheduled at a non-integer multiple of the CPU
// cycle time.
Tick icache_stall = icache_complete - curTick - cycles(1);
Tick dcache_stall =
dcache_access ? dcache_complete - curTick - cycles(1) : 0;
latency += icache_stall + dcache_stall;
}
}
advancePC(fault);
}
if (_status != Idle)
tickEvent.schedule(curTick + latency);
}
////////////////////////////////////////////////////////////////////////
//
// AtomicSimpleCPU Simulation Object
//
BEGIN_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
SimObjectParam<MemObject *> mem;
#if FULL_SYSTEM
SimObjectParam<AlphaITB *> itb;
SimObjectParam<AlphaDTB *> dtb;
SimObjectParam<System *> system;
Param<int> cpu_id;
Param<Tick> profile;
#else
SimObjectParam<Process *> workload;
#endif // FULL_SYSTEM
Param<int> clock;
Param<bool> defer_registration;
Param<int> width;
Param<bool> function_trace;
Param<Tick> function_trace_start;
Param<bool> simulate_stalls;
END_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
BEGIN_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
INIT_PARAM(max_insts_any_thread,
"terminate when any thread reaches this inst count"),
INIT_PARAM(max_insts_all_threads,
"terminate when all threads have reached this inst count"),
INIT_PARAM(max_loads_any_thread,
"terminate when any thread reaches this load count"),
INIT_PARAM(max_loads_all_threads,
"terminate when all threads have reached this load count"),
INIT_PARAM(mem, "memory"),
#if FULL_SYSTEM
INIT_PARAM(itb, "Instruction TLB"),
INIT_PARAM(dtb, "Data TLB"),
INIT_PARAM(system, "system object"),
INIT_PARAM(cpu_id, "processor ID"),
INIT_PARAM(profile, ""),
#else
INIT_PARAM(workload, "processes to run"),
#endif // FULL_SYSTEM
INIT_PARAM(clock, "clock speed"),
INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
INIT_PARAM(width, "cpu width"),
INIT_PARAM(function_trace, "Enable function trace"),
INIT_PARAM(function_trace_start, "Cycle to start function trace"),
INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
END_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
CREATE_SIM_OBJECT(AtomicSimpleCPU)
{
AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
params->name = getInstanceName();
params->numberOfThreads = 1;
params->max_insts_any_thread = max_insts_any_thread;
params->max_insts_all_threads = max_insts_all_threads;
params->max_loads_any_thread = max_loads_any_thread;
params->max_loads_all_threads = max_loads_all_threads;
params->deferRegistration = defer_registration;
params->clock = clock;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
params->width = width;
params->simulate_stalls = simulate_stalls;
params->mem = mem;
#if FULL_SYSTEM
params->itb = itb;
params->dtb = dtb;
params->system = system;
params->cpu_id = cpu_id;
params->profile = profile;
#else
params->process = workload;
#endif
AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
return cpu;
}
REGISTER_SIM_OBJECT("AtomicSimpleCPU", AtomicSimpleCPU)