| /* |
| * Copyright (c) 2011-2012, 2016-2018 ARM Limited |
| * Copyright (c) 2013 Advanced Micro Devices, Inc. |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2004-2006 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Kevin Lim |
| */ |
| |
| #ifndef __CPU_O3_THREAD_CONTEXT_HH__ |
| #define __CPU_O3_THREAD_CONTEXT_HH__ |
| |
| #include "config/the_isa.hh" |
| #include "cpu/o3/isa_specific.hh" |
| #include "cpu/thread_context.hh" |
| |
| class EndQuiesceEvent; |
| namespace Kernel { |
| class Statistics; |
| } |
| |
| /** |
| * Derived ThreadContext class for use with the O3CPU. It |
| * provides the interface for any external objects to access a |
| * single thread's state and some general CPU state. Any time |
| * external objects try to update state through this interface, |
| * the CPU will create an event to squash all in-flight |
| * instructions in order to ensure state is maintained correctly. |
| * It must be defined specifically for the O3CPU because |
| * not all architectural state is located within the O3ThreadState |
| * (such as the commit PC, and registers), and specific actions |
| * must be taken when using this interface (such as squashing all |
| * in-flight instructions when doing a write to this interface). |
| */ |
| template <class Impl> |
| class O3ThreadContext : public ThreadContext |
| { |
| public: |
| typedef typename Impl::O3CPU O3CPU; |
| |
| /** Pointer to the CPU. */ |
| O3CPU *cpu; |
| |
| bool |
| schedule(PCEvent *e) override |
| { |
| return thread->pcEventQueue.schedule(e); |
| } |
| bool |
| remove(PCEvent *e) override |
| { |
| return thread->pcEventQueue.remove(e); |
| } |
| |
| void |
| scheduleInstCountEvent(Event *event, Tick count) override |
| { |
| thread->comInstEventQueue.schedule(event, count); |
| } |
| void |
| descheduleInstCountEvent(Event *event) override |
| { |
| thread->comInstEventQueue.deschedule(event); |
| } |
| Tick |
| getCurrentInstCount() override |
| { |
| return thread->comInstEventQueue.getCurTick(); |
| } |
| |
| /** Pointer to the thread state that this TC corrseponds to. */ |
| O3ThreadState<Impl> *thread; |
| |
| /** Returns a pointer to the ITB. */ |
| BaseTLB *getITBPtr() override { return cpu->itb; } |
| |
| /** Returns a pointer to the DTB. */ |
| BaseTLB *getDTBPtr() override { return cpu->dtb; } |
| |
| CheckerCPU *getCheckerCpuPtr() override { return NULL; } |
| |
| TheISA::ISA * |
| getIsaPtr() override |
| { |
| return cpu->isa[thread->threadId()]; |
| } |
| |
| TheISA::Decoder * |
| getDecoderPtr() override |
| { |
| return cpu->fetch.decoder[thread->threadId()]; |
| } |
| |
| /** Returns a pointer to this CPU. */ |
| BaseCPU *getCpuPtr() override { return cpu; } |
| |
| /** Reads this CPU's ID. */ |
| int cpuId() const override { return cpu->cpuId(); } |
| |
| /** Reads this CPU's Socket ID. */ |
| uint32_t socketId() const override { return cpu->socketId(); } |
| |
| ContextID contextId() const override { return thread->contextId(); } |
| |
| void setContextId(ContextID id) override { thread->setContextId(id); } |
| |
| /** Returns this thread's ID number. */ |
| int threadId() const override { return thread->threadId(); } |
| void setThreadId(int id) override { return thread->setThreadId(id); } |
| |
| /** Returns a pointer to the system. */ |
| System *getSystemPtr() override { return cpu->system; } |
| |
| /** Returns a pointer to this thread's kernel statistics. */ |
| ::Kernel::Statistics * |
| getKernelStats() override |
| { |
| return thread->kernelStats; |
| } |
| |
| /** Returns a pointer to this thread's process. */ |
| Process *getProcessPtr() override { return thread->getProcessPtr(); } |
| |
| void setProcessPtr(Process *p) override { thread->setProcessPtr(p); } |
| |
| PortProxy &getPhysProxy() override { return thread->getPhysProxy(); } |
| |
| PortProxy &getVirtProxy() override; |
| |
| void |
| initMemProxies(ThreadContext *tc) override |
| { |
| thread->initMemProxies(tc); |
| } |
| |
| /** Returns this thread's status. */ |
| Status status() const override { return thread->status(); } |
| |
| /** Sets this thread's status. */ |
| void |
| setStatus(Status new_status) override |
| { |
| thread->setStatus(new_status); |
| } |
| |
| /** Set the status to Active. */ |
| void activate() override; |
| |
| /** Set the status to Suspended. */ |
| void suspend() override; |
| |
| /** Set the status to Halted. */ |
| void halt() override; |
| |
| /** Dumps the function profiling information. |
| * @todo: Implement. |
| */ |
| void dumpFuncProfile() override; |
| |
| /** Takes over execution of a thread from another CPU. */ |
| void takeOverFrom(ThreadContext *old_context) override; |
| |
| /** Registers statistics associated with this TC. */ |
| void regStats(const std::string &name) override; |
| |
| /** Reads the last tick that this thread was activated on. */ |
| Tick readLastActivate() override; |
| /** Reads the last tick that this thread was suspended on. */ |
| Tick readLastSuspend() override; |
| |
| /** Clears the function profiling information. */ |
| void profileClear() override; |
| /** Samples the function profiling information. */ |
| void profileSample() override; |
| |
| /** Copies the architectural registers from another TC into this TC. */ |
| void copyArchRegs(ThreadContext *tc) override; |
| |
| /** Resets all architectural registers to 0. */ |
| void clearArchRegs() override; |
| |
| /** Reads an integer register. */ |
| RegVal |
| readReg(RegIndex reg_idx) |
| { |
| return readIntRegFlat(flattenRegId(RegId(IntRegClass, |
| reg_idx)).index()); |
| } |
| RegVal |
| readIntReg(RegIndex reg_idx) const override |
| { |
| return readIntRegFlat(flattenRegId(RegId(IntRegClass, |
| reg_idx)).index()); |
| } |
| |
| RegVal |
| readFloatReg(RegIndex reg_idx) const override |
| { |
| return readFloatRegFlat(flattenRegId(RegId(FloatRegClass, |
| reg_idx)).index()); |
| } |
| |
| const VecRegContainer & |
| readVecReg(const RegId& id) const override |
| { |
| return readVecRegFlat(flattenRegId(id).index()); |
| } |
| |
| /** |
| * Read vector register operand for modification, hierarchical indexing. |
| */ |
| VecRegContainer & |
| getWritableVecReg(const RegId& id) override |
| { |
| return getWritableVecRegFlat(flattenRegId(id).index()); |
| } |
| |
| /** Vector Register Lane Interfaces. */ |
| /** @{ */ |
| /** Reads source vector 8bit operand. */ |
| ConstVecLane8 |
| readVec8BitLaneReg(const RegId& id) const override |
| { |
| return readVecLaneFlat<uint8_t>(flattenRegId(id).index(), |
| id.elemIndex()); |
| } |
| |
| /** Reads source vector 16bit operand. */ |
| ConstVecLane16 |
| readVec16BitLaneReg(const RegId& id) const override |
| { |
| return readVecLaneFlat<uint16_t>(flattenRegId(id).index(), |
| id.elemIndex()); |
| } |
| |
| /** Reads source vector 32bit operand. */ |
| ConstVecLane32 |
| readVec32BitLaneReg(const RegId& id) const override |
| { |
| return readVecLaneFlat<uint32_t>(flattenRegId(id).index(), |
| id.elemIndex()); |
| } |
| |
| /** Reads source vector 64bit operand. */ |
| ConstVecLane64 |
| readVec64BitLaneReg(const RegId& id) const override |
| { |
| return readVecLaneFlat<uint64_t>(flattenRegId(id).index(), |
| id.elemIndex()); |
| } |
| |
| /** Write a lane of the destination vector register. */ |
| void |
| setVecLane(const RegId& reg, |
| const LaneData<LaneSize::Byte>& val) override |
| { |
| return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); |
| } |
| void |
| setVecLane(const RegId& reg, |
| const LaneData<LaneSize::TwoByte>& val) override |
| { |
| return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); |
| } |
| void |
| setVecLane(const RegId& reg, |
| const LaneData<LaneSize::FourByte>& val) override |
| { |
| return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); |
| } |
| void |
| setVecLane(const RegId& reg, |
| const LaneData<LaneSize::EightByte>& val) override |
| { |
| return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); |
| } |
| /** @} */ |
| |
| const VecElem & |
| readVecElem(const RegId& reg) const override |
| { |
| return readVecElemFlat(flattenRegId(reg).index(), reg.elemIndex()); |
| } |
| |
| const VecPredRegContainer & |
| readVecPredReg(const RegId& id) const override |
| { |
| return readVecPredRegFlat(flattenRegId(id).index()); |
| } |
| |
| VecPredRegContainer& |
| getWritableVecPredReg(const RegId& id) override |
| { |
| return getWritableVecPredRegFlat(flattenRegId(id).index()); |
| } |
| |
| RegVal |
| readCCReg(RegIndex reg_idx) const override |
| { |
| return readCCRegFlat(flattenRegId(RegId(CCRegClass, |
| reg_idx)).index()); |
| } |
| |
| /** Sets an integer register to a value. */ |
| void |
| setIntReg(RegIndex reg_idx, RegVal val) override |
| { |
| setIntRegFlat(flattenRegId(RegId(IntRegClass, reg_idx)).index(), val); |
| } |
| |
| void |
| setFloatReg(RegIndex reg_idx, RegVal val) override |
| { |
| setFloatRegFlat(flattenRegId(RegId(FloatRegClass, |
| reg_idx)).index(), val); |
| } |
| |
| void |
| setVecReg(const RegId& reg, const VecRegContainer& val) override |
| { |
| setVecRegFlat(flattenRegId(reg).index(), val); |
| } |
| |
| void |
| setVecElem(const RegId& reg, const VecElem& val) override |
| { |
| setVecElemFlat(flattenRegId(reg).index(), reg.elemIndex(), val); |
| } |
| |
| void |
| setVecPredReg(const RegId& reg, |
| const VecPredRegContainer& val) override |
| { |
| setVecPredRegFlat(flattenRegId(reg).index(), val); |
| } |
| |
| void |
| setCCReg(RegIndex reg_idx, RegVal val) override |
| { |
| setCCRegFlat(flattenRegId(RegId(CCRegClass, reg_idx)).index(), val); |
| } |
| |
| /** Reads this thread's PC state. */ |
| TheISA::PCState |
| pcState() const override |
| { |
| return cpu->pcState(thread->threadId()); |
| } |
| |
| /** Sets this thread's PC state. */ |
| void pcState(const TheISA::PCState &val) override; |
| |
| void pcStateNoRecord(const TheISA::PCState &val) override; |
| |
| /** Reads this thread's PC. */ |
| Addr |
| instAddr() const override |
| { |
| return cpu->instAddr(thread->threadId()); |
| } |
| |
| /** Reads this thread's next PC. */ |
| Addr |
| nextInstAddr() const override |
| { |
| return cpu->nextInstAddr(thread->threadId()); |
| } |
| |
| /** Reads this thread's next PC. */ |
| MicroPC |
| microPC() const override |
| { |
| return cpu->microPC(thread->threadId()); |
| } |
| |
| /** Reads a miscellaneous register. */ |
| RegVal |
| readMiscRegNoEffect(RegIndex misc_reg) const override |
| { |
| return cpu->readMiscRegNoEffect(misc_reg, thread->threadId()); |
| } |
| |
| /** Reads a misc. register, including any side-effects the |
| * read might have as defined by the architecture. */ |
| RegVal |
| readMiscReg(RegIndex misc_reg) override |
| { |
| return cpu->readMiscReg(misc_reg, thread->threadId()); |
| } |
| |
| /** Sets a misc. register. */ |
| void setMiscRegNoEffect(RegIndex misc_reg, RegVal val) override; |
| |
| /** Sets a misc. register, including any side-effects the |
| * write might have as defined by the architecture. */ |
| void setMiscReg(RegIndex misc_reg, RegVal val) override; |
| |
| RegId flattenRegId(const RegId& regId) const override; |
| |
| /** Returns the number of consecutive store conditional failures. */ |
| // @todo: Figure out where these store cond failures should go. |
| unsigned |
| readStCondFailures() const override |
| { |
| return thread->storeCondFailures; |
| } |
| |
| /** Sets the number of consecutive store conditional failures. */ |
| void |
| setStCondFailures(unsigned sc_failures) override |
| { |
| thread->storeCondFailures = sc_failures; |
| } |
| |
| /** Executes a syscall in SE mode. */ |
| void |
| syscall(int64_t callnum, Fault *fault) override |
| { |
| return cpu->syscall(callnum, thread->threadId(), fault); |
| } |
| |
| /** Reads the funcExeInst counter. */ |
| Counter readFuncExeInst() const override { return thread->funcExeInst; } |
| |
| /** Returns pointer to the quiesce event. */ |
| EndQuiesceEvent * |
| getQuiesceEvent() override |
| { |
| return this->thread->quiesceEvent; |
| } |
| /** check if the cpu is currently in state update mode and squash if not. |
| * This function will return true if a trap is pending or if a fault or |
| * similar is currently writing to the thread context and doesn't want |
| * reset all the state (see noSquashFromTC). |
| */ |
| inline void |
| conditionalSquash() |
| { |
| if (!thread->trapPending && !thread->noSquashFromTC) |
| cpu->squashFromTC(thread->threadId()); |
| } |
| |
| RegVal readIntRegFlat(RegIndex idx) const override; |
| void setIntRegFlat(RegIndex idx, RegVal val) override; |
| |
| RegVal readFloatRegFlat(RegIndex idx) const override; |
| void setFloatRegFlat(RegIndex idx, RegVal val) override; |
| |
| const VecRegContainer& readVecRegFlat(RegIndex idx) const override; |
| /** Read vector register operand for modification, flat indexing. */ |
| VecRegContainer& getWritableVecRegFlat(RegIndex idx) override; |
| void setVecRegFlat(RegIndex idx, const VecRegContainer& val) override; |
| |
| template <typename VecElem> |
| VecLaneT<VecElem, true> |
| readVecLaneFlat(RegIndex idx, int lId) const |
| { |
| return cpu->template readArchVecLane<VecElem>(idx, lId, |
| thread->threadId()); |
| } |
| |
| template <typename LD> |
| void |
| setVecLaneFlat(int idx, int lId, const LD& val) |
| { |
| cpu->template setArchVecLane(idx, lId, thread->threadId(), val); |
| } |
| |
| const VecElem &readVecElemFlat(RegIndex idx, |
| const ElemIndex& elemIndex) const override; |
| void setVecElemFlat(RegIndex idx, const ElemIndex& elemIdx, |
| const VecElem& val) override; |
| |
| const VecPredRegContainer& readVecPredRegFlat(RegIndex idx) const override; |
| VecPredRegContainer& getWritableVecPredRegFlat(RegIndex idx) override; |
| void setVecPredRegFlat(RegIndex idx, |
| const VecPredRegContainer& val) override; |
| |
| RegVal readCCRegFlat(RegIndex idx) const override; |
| void setCCRegFlat(RegIndex idx, RegVal val) override; |
| }; |
| |
| #endif |