blob: 9fe5b53420c5bc031114b1c4d9e72fa84758c4ef [file] [log] [blame]
/*
* Copyright (c) 2011, 2013, 2016-2020 ARM Limited
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* Copyright (c) 2009 The University of Edinburgh
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_BASE_DYN_INST_HH__
#define __CPU_BASE_DYN_INST_HH__
#include <array>
#include <bitset>
#include <deque>
#include <list>
#include <string>
#include "arch/generic/tlb.hh"
#include "arch/utility.hh"
#include "base/trace.hh"
#include "config/the_isa.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/exec_context.hh"
#include "cpu/exetrace.hh"
#include "cpu/inst_res.hh"
#include "cpu/inst_seq.hh"
#include "cpu/op_class.hh"
#include "cpu/static_inst.hh"
#include "cpu/translation.hh"
#include "debug/HtmCpu.hh"
#include "mem/packet.hh"
#include "mem/request.hh"
#include "sim/byteswap.hh"
#include "sim/system.hh"
/**
* @file
* Defines a dynamic instruction context.
*/
template <class Impl>
class BaseDynInst : public ExecContext, public RefCounted
{
public:
// Typedef for the CPU.
typedef typename Impl::CPUType ImplCPU;
typedef typename ImplCPU::ImplState ImplState;
using VecRegContainer = TheISA::VecRegContainer;
using LSQRequestPtr = typename Impl::CPUPol::LSQ::LSQRequest*;
using LQIterator = typename Impl::CPUPol::LSQUnit::LQIterator;
using SQIterator = typename Impl::CPUPol::LSQUnit::SQIterator;
// The DynInstPtr type.
typedef typename Impl::DynInstPtr DynInstPtr;
typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
// The list of instructions iterator type.
typedef typename std::list<DynInstPtr>::iterator ListIt;
enum {
MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
MaxInstDestRegs = TheISA::MaxInstDestRegs /// Max dest regs
};
protected:
enum Status {
IqEntry, /// Instruction is in the IQ
RobEntry, /// Instruction is in the ROB
LsqEntry, /// Instruction is in the LSQ
Completed, /// Instruction has completed
ResultReady, /// Instruction has its result
CanIssue, /// Instruction can issue and execute
Issued, /// Instruction has issued
Executed, /// Instruction has executed
CanCommit, /// Instruction can commit
AtCommit, /// Instruction has reached commit
Committed, /// Instruction has committed
Squashed, /// Instruction is squashed
SquashedInIQ, /// Instruction is squashed in the IQ
SquashedInLSQ, /// Instruction is squashed in the LSQ
SquashedInROB, /// Instruction is squashed in the ROB
PinnedRegsRenamed, /// Pinned registers are renamed
PinnedRegsWritten, /// Pinned registers are written back
PinnedRegsSquashDone, /// Regs pinning status updated after squash
RecoverInst, /// Is a recover instruction
BlockingInst, /// Is a blocking instruction
ThreadsyncWait, /// Is a thread synchronization instruction
SerializeBefore, /// Needs to serialize on
/// instructions ahead of it
SerializeAfter, /// Needs to serialize instructions behind it
SerializeHandled, /// Serialization has been handled
NumStatus
};
enum Flags {
NotAnInst,
TranslationStarted,
TranslationCompleted,
PossibleLoadViolation,
HitExternalSnoop,
EffAddrValid,
RecordResult,
Predicate,
MemAccPredicate,
PredTaken,
IsStrictlyOrdered,
ReqMade,
MemOpDone,
HtmFromTransaction,
MaxFlags
};
public:
/** The sequence number of the instruction. */
InstSeqNum seqNum;
/** The StaticInst used by this BaseDynInst. */
const StaticInstPtr staticInst;
/** Pointer to the Impl's CPU object. */
ImplCPU *cpu;
BaseCPU *getCpuPtr() { return cpu; }
/** Pointer to the thread state. */
ImplState *thread;
/** The kind of fault this instruction has generated. */
Fault fault;
/** InstRecord that tracks this instructions. */
Trace::InstRecord *traceData;
protected:
/** The result of the instruction; assumes an instruction can have many
* destination registers.
*/
std::queue<InstResult> instResult;
/** PC state for this instruction. */
TheISA::PCState pc;
private:
/* An amalgamation of a lot of boolean values into one */
std::bitset<MaxFlags> instFlags;
/** The status of this BaseDynInst. Several bits can be set. */
std::bitset<NumStatus> status;
protected:
/** Whether or not the source register is ready.
* @todo: Not sure this should be here vs the derived class.
*/
std::bitset<MaxInstSrcRegs> _readySrcRegIdx;
public:
/** The thread this instruction is from. */
ThreadID threadNumber;
/** Iterator pointing to this BaseDynInst in the list of all insts. */
ListIt instListIt;
////////////////////// Branch Data ///////////////
/** Predicted PC state after this instruction. */
TheISA::PCState predPC;
/** The Macroop if one exists */
const StaticInstPtr macroop;
/** How many source registers are ready. */
uint8_t readyRegs;
public:
/////////////////////// Load Store Data //////////////////////
/** The effective virtual address (lds & stores only). */
Addr effAddr;
/** The effective physical address. */
Addr physEffAddr;
/** The memory request flags (from translation). */
unsigned memReqFlags;
/** The size of the request */
unsigned effSize;
/** Pointer to the data for the memory access. */
uint8_t *memData;
/** Load queue index. */
int16_t lqIdx;
LQIterator lqIt;
/** Store queue index. */
int16_t sqIdx;
SQIterator sqIt;
/////////////////////// TLB Miss //////////////////////
/**
* Saved memory request (needed when the DTB address translation is
* delayed due to a hw page table walk).
*/
LSQRequestPtr savedReq;
/////////////////////// Checker //////////////////////
// Need a copy of main request pointer to verify on writes.
RequestPtr reqToVerify;
private:
// hardware transactional memory
uint64_t htmUid;
uint64_t htmDepth;
protected:
/** Flattened register index of the destination registers of this
* instruction.
*/
std::array<RegId, TheISA::MaxInstDestRegs> _flatDestRegIdx;
/** Physical register index of the destination registers of this
* instruction.
*/
std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _destRegIdx;
/** Physical register index of the source registers of this
* instruction.
*/
std::array<PhysRegIdPtr, TheISA::MaxInstSrcRegs> _srcRegIdx;
/** Physical register index of the previous producers of the
* architected destinations.
*/
std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _prevDestRegIdx;
public:
/** Records changes to result? */
void recordResult(bool f) { instFlags[RecordResult] = f; }
/** Is the effective virtual address valid. */
bool effAddrValid() const { return instFlags[EffAddrValid]; }
void effAddrValid(bool b) { instFlags[EffAddrValid] = b; }
/** Whether or not the memory operation is done. */
bool memOpDone() const { return instFlags[MemOpDone]; }
void memOpDone(bool f) { instFlags[MemOpDone] = f; }
bool notAnInst() const { return instFlags[NotAnInst]; }
void setNotAnInst() { instFlags[NotAnInst] = true; }
////////////////////////////////////////////
//
// INSTRUCTION EXECUTION
//
////////////////////////////////////////////
void
demapPage(Addr vaddr, uint64_t asn) override
{
cpu->demapPage(vaddr, asn);
}
Fault initiateMemRead(Addr addr, unsigned size, Request::Flags flags,
const std::vector<bool> &byte_enable) override;
Fault initiateHtmCmd(Request::Flags flags) override;
Fault writeMem(uint8_t *data, unsigned size, Addr addr,
Request::Flags flags, uint64_t *res,
const std::vector<bool> &byte_enable) override;
Fault initiateMemAMO(Addr addr, unsigned size, Request::Flags flags,
AtomicOpFunctorPtr amo_op) override;
/** True if the DTB address translation has started. */
bool translationStarted() const { return instFlags[TranslationStarted]; }
void translationStarted(bool f) { instFlags[TranslationStarted] = f; }
/** True if the DTB address translation has completed. */
bool translationCompleted() const { return instFlags[TranslationCompleted]; }
void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }
/** True if this address was found to match a previous load and they issued
* out of order. If that happend, then it's only a problem if an incoming
* snoop invalidate modifies the line, in which case we need to squash.
* If nothing modified the line the order doesn't matter.
*/
bool
possibleLoadViolation() const
{
return instFlags[PossibleLoadViolation];
}
void
possibleLoadViolation(bool f)
{
instFlags[PossibleLoadViolation] = f;
}
/** True if the address hit a external snoop while sitting in the LSQ.
* If this is true and a older instruction sees it, this instruction must
* reexecute
*/
bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }
/**
* Returns true if the DTB address translation is being delayed due to a hw
* page table walk.
*/
bool
isTranslationDelayed() const
{
return (translationStarted() && !translationCompleted());
}
public:
#ifdef DEBUG
void dumpSNList();
#endif
/** Returns the physical register index of the i'th destination
* register.
*/
PhysRegIdPtr
renamedDestRegIdx(int idx) const
{
return _destRegIdx[idx];
}
/** Returns the physical register index of the i'th source register. */
PhysRegIdPtr
renamedSrcRegIdx(int idx) const
{
assert(TheISA::MaxInstSrcRegs > idx);
return _srcRegIdx[idx];
}
/** Returns the flattened register index of the i'th destination
* register.
*/
const RegId &
flattenedDestRegIdx(int idx) const
{
return _flatDestRegIdx[idx];
}
/** Returns the physical register index of the previous physical register
* that remapped to the same logical register index.
*/
PhysRegIdPtr
prevDestRegIdx(int idx) const
{
return _prevDestRegIdx[idx];
}
/** Renames a destination register to a physical register. Also records
* the previous physical register that the logical register mapped to.
*/
void
renameDestReg(int idx, PhysRegIdPtr renamed_dest,
PhysRegIdPtr previous_rename)
{
_destRegIdx[idx] = renamed_dest;
_prevDestRegIdx[idx] = previous_rename;
if (renamed_dest->isPinned())
setPinnedRegsRenamed();
}
/** Renames a source logical register to the physical register which
* has/will produce that logical register's result.
* @todo: add in whether or not the source register is ready.
*/
void
renameSrcReg(int idx, PhysRegIdPtr renamed_src)
{
_srcRegIdx[idx] = renamed_src;
}
/** Flattens a destination architectural register index into a logical
* index.
*/
void
flattenDestReg(int idx, const RegId &flattened_dest)
{
_flatDestRegIdx[idx] = flattened_dest;
}
/** BaseDynInst constructor given a binary instruction.
* @param staticInst A StaticInstPtr to the underlying instruction.
* @param pc The PC state for the instruction.
* @param predPC The predicted next PC state for the instruction.
* @param seq_num The sequence number of the instruction.
* @param cpu Pointer to the instruction's CPU.
*/
BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop,
TheISA::PCState pc, TheISA::PCState predPC,
InstSeqNum seq_num, ImplCPU *cpu);
/** BaseDynInst constructor given a StaticInst pointer.
* @param _staticInst The StaticInst for this BaseDynInst.
*/
BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop);
/** BaseDynInst destructor. */
~BaseDynInst();
private:
/** Function to initialize variables in the constructors. */
void initVars();
public:
/** Dumps out contents of this BaseDynInst. */
void dump();
/** Dumps out contents of this BaseDynInst into given string. */
void dump(std::string &outstring);
/** Read this CPU's ID. */
int cpuId() const { return cpu->cpuId(); }
/** Read this CPU's Socket ID. */
uint32_t socketId() const { return cpu->socketId(); }
/** Read this CPU's data requestor ID */
RequestorID requestorId() const { return cpu->dataRequestorId(); }
/** Read this context's system-wide ID **/
ContextID contextId() const { return thread->contextId(); }
/** Returns the fault type. */
Fault getFault() const { return fault; }
/** TODO: This I added for the LSQRequest side to be able to modify the
* fault. There should be a better mechanism in place. */
Fault& getFault() { return fault; }
/** Checks whether or not this instruction has had its branch target
* calculated yet. For now it is not utilized and is hacked to be
* always false.
* @todo: Actually use this instruction.
*/
bool doneTargCalc() { return false; }
/** Set the predicted target of this current instruction. */
void setPredTarg(const TheISA::PCState &_predPC) { predPC = _predPC; }
const TheISA::PCState &readPredTarg() { return predPC; }
/** Returns the predicted PC immediately after the branch. */
Addr predInstAddr() { return predPC.instAddr(); }
/** Returns the predicted PC two instructions after the branch */
Addr predNextInstAddr() { return predPC.nextInstAddr(); }
/** Returns the predicted micro PC after the branch */
Addr predMicroPC() { return predPC.microPC(); }
/** Returns whether the instruction was predicted taken or not. */
bool readPredTaken() { return instFlags[PredTaken]; }
void
setPredTaken(bool predicted_taken)
{
instFlags[PredTaken] = predicted_taken;
}
/** Returns whether the instruction mispredicted. */
bool
mispredicted()
{
TheISA::PCState tempPC = pc;
TheISA::advancePC(tempPC, staticInst);
return !(tempPC == predPC);
}
//
// Instruction types. Forward checks to StaticInst object.
//
bool isNop() const { return staticInst->isNop(); }
bool isMemRef() const { return staticInst->isMemRef(); }
bool isLoad() const { return staticInst->isLoad(); }
bool isStore() const { return staticInst->isStore(); }
bool isAtomic() const { return staticInst->isAtomic(); }
bool isStoreConditional() const
{ return staticInst->isStoreConditional(); }
bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
bool isInteger() const { return staticInst->isInteger(); }
bool isFloating() const { return staticInst->isFloating(); }
bool isVector() const { return staticInst->isVector(); }
bool isControl() const { return staticInst->isControl(); }
bool isCall() const { return staticInst->isCall(); }
bool isReturn() const { return staticInst->isReturn(); }
bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
bool isCondCtrl() const { return staticInst->isCondCtrl(); }
bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
bool isSerializing() const { return staticInst->isSerializing(); }
bool
isSerializeBefore() const
{
return staticInst->isSerializeBefore() || status[SerializeBefore];
}
bool
isSerializeAfter() const
{
return staticInst->isSerializeAfter() || status[SerializeAfter];
}
bool isSquashAfter() const { return staticInst->isSquashAfter(); }
bool isFullMemBarrier() const { return staticInst->isFullMemBarrier(); }
bool isReadBarrier() const { return staticInst->isReadBarrier(); }
bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
bool isQuiesce() const { return staticInst->isQuiesce(); }
bool isUnverifiable() const { return staticInst->isUnverifiable(); }
bool isSyscall() const { return staticInst->isSyscall(); }
bool isMacroop() const { return staticInst->isMacroop(); }
bool isMicroop() const { return staticInst->isMicroop(); }
bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
bool isLastMicroop() const { return staticInst->isLastMicroop(); }
bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
// hardware transactional memory
bool isHtmStart() const { return staticInst->isHtmStart(); }
bool isHtmStop() const { return staticInst->isHtmStop(); }
bool isHtmCancel() const { return staticInst->isHtmCancel(); }
bool isHtmCmd() const { return staticInst->isHtmCmd(); }
uint64_t
getHtmTransactionUid() const override
{
assert(instFlags[HtmFromTransaction]);
return this->htmUid;
}
uint64_t
newHtmTransactionUid() const override
{
panic("Not yet implemented\n");
return 0;
}
bool
inHtmTransactionalState() const override
{
return instFlags[HtmFromTransaction];
}
uint64_t
getHtmTransactionalDepth() const override
{
if (inHtmTransactionalState())
return this->htmDepth;
else
return 0;
}
void
setHtmTransactionalState(uint64_t htm_uid, uint64_t htm_depth)
{
instFlags.set(HtmFromTransaction);
htmUid = htm_uid;
htmDepth = htm_depth;
}
void
clearHtmTransactionalState()
{
if (inHtmTransactionalState()) {
DPRINTF(HtmCpu,
"clearing instuction's transactional state htmUid=%u\n",
getHtmTransactionUid());
instFlags.reset(HtmFromTransaction);
htmUid = -1;
htmDepth = 0;
}
}
/** Temporarily sets this instruction as a serialize before instruction. */
void setSerializeBefore() { status.set(SerializeBefore); }
/** Clears the serializeBefore part of this instruction. */
void clearSerializeBefore() { status.reset(SerializeBefore); }
/** Checks if this serializeBefore is only temporarily set. */
bool isTempSerializeBefore() { return status[SerializeBefore]; }
/** Temporarily sets this instruction as a serialize after instruction. */
void setSerializeAfter() { status.set(SerializeAfter); }
/** Clears the serializeAfter part of this instruction.*/
void clearSerializeAfter() { status.reset(SerializeAfter); }
/** Checks if this serializeAfter is only temporarily set. */
bool isTempSerializeAfter() { return status[SerializeAfter]; }
/** Sets the serialization part of this instruction as handled. */
void setSerializeHandled() { status.set(SerializeHandled); }
/** Checks if the serialization part of this instruction has been
* handled. This does not apply to the temporary serializing
* state; it only applies to this instruction's own permanent
* serializing state.
*/
bool isSerializeHandled() { return status[SerializeHandled]; }
/** Returns the opclass of this instruction. */
OpClass opClass() const { return staticInst->opClass(); }
/** Returns the branch target address. */
TheISA::PCState branchTarget() const
{ return staticInst->branchTarget(pc); }
/** Returns the number of source registers. */
int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
/** Returns the number of destination registers. */
int8_t numDestRegs() const { return staticInst->numDestRegs(); }
// the following are used to track physical register usage
// for machines with separate int & FP reg files
int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
int8_t numCCDestRegs() const { return staticInst->numCCDestRegs(); }
int8_t numVecDestRegs() const { return staticInst->numVecDestRegs(); }
int8_t
numVecElemDestRegs() const
{
return staticInst->numVecElemDestRegs();
}
int8_t
numVecPredDestRegs() const
{
return staticInst->numVecPredDestRegs();
}
/** Returns the logical register index of the i'th destination register. */
const RegId& destRegIdx(int i) const { return staticInst->destRegIdx(i); }
/** Returns the logical register index of the i'th source register. */
const RegId& srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
/** Return the size of the instResult queue. */
uint8_t resultSize() { return instResult.size(); }
/** Pops a result off the instResult queue.
* If the result stack is empty, return the default value.
* */
InstResult
popResult(InstResult dflt=InstResult())
{
if (!instResult.empty()) {
InstResult t = instResult.front();
instResult.pop();
return t;
}
return dflt;
}
/** Pushes a result onto the instResult queue. */
/** @{ */
/** Scalar result. */
template<typename T>
void
setScalarResult(T &&t)
{
if (instFlags[RecordResult]) {
instResult.push(InstResult(std::forward<T>(t),
InstResult::ResultType::Scalar));
}
}
/** Full vector result. */
template<typename T>
void
setVecResult(T &&t)
{
if (instFlags[RecordResult]) {
instResult.push(InstResult(std::forward<T>(t),
InstResult::ResultType::VecReg));
}
}
/** Vector element result. */
template<typename T>
void
setVecElemResult(T &&t)
{
if (instFlags[RecordResult]) {
instResult.push(InstResult(std::forward<T>(t),
InstResult::ResultType::VecElem));
}
}
/** Predicate result. */
template<typename T>
void
setVecPredResult(T &&t)
{
if (instFlags[RecordResult]) {
instResult.push(InstResult(std::forward<T>(t),
InstResult::ResultType::VecPredReg));
}
}
/** @} */
/** Records an integer register being set to a value. */
void
setIntRegOperand(const StaticInst *si, int idx, RegVal val) override
{
setScalarResult(val);
}
/** Records a CC register being set to a value. */
void
setCCRegOperand(const StaticInst *si, int idx, RegVal val) override
{
setScalarResult(val);
}
/** Record a vector register being set to a value */
void
setVecRegOperand(const StaticInst *si, int idx,
const VecRegContainer &val) override
{
setVecResult(val);
}
/** Records an fp register being set to an integer value. */
void
setFloatRegOperandBits(const StaticInst *si, int idx, RegVal val) override
{
setScalarResult(val);
}
/** Record a vector register being set to a value */
void
setVecElemOperand(const StaticInst *si, int idx,
const VecElem val) override
{
setVecElemResult(val);
}
/** Record a vector register being set to a value */
void
setVecPredRegOperand(const StaticInst *si, int idx,
const VecPredRegContainer &val) override
{
setVecPredResult(val);
}
/** Records that one of the source registers is ready. */
void markSrcRegReady();
/** Marks a specific register as ready. */
void markSrcRegReady(RegIndex src_idx);
/** Returns if a source register is ready. */
bool
isReadySrcRegIdx(int idx) const
{
return this->_readySrcRegIdx[idx];
}
/** Sets this instruction as completed. */
void setCompleted() { status.set(Completed); }
/** Returns whether or not this instruction is completed. */
bool isCompleted() const { return status[Completed]; }
/** Marks the result as ready. */
void setResultReady() { status.set(ResultReady); }
/** Returns whether or not the result is ready. */
bool isResultReady() const { return status[ResultReady]; }
/** Sets this instruction as ready to issue. */
void setCanIssue() { status.set(CanIssue); }
/** Returns whether or not this instruction is ready to issue. */
bool readyToIssue() const { return status[CanIssue]; }
/** Clears this instruction being able to issue. */
void clearCanIssue() { status.reset(CanIssue); }
/** Sets this instruction as issued from the IQ. */
void setIssued() { status.set(Issued); }
/** Returns whether or not this instruction has issued. */
bool isIssued() const { return status[Issued]; }
/** Clears this instruction as being issued. */
void clearIssued() { status.reset(Issued); }
/** Sets this instruction as executed. */
void setExecuted() { status.set(Executed); }
/** Returns whether or not this instruction has executed. */
bool isExecuted() const { return status[Executed]; }
/** Sets this instruction as ready to commit. */
void setCanCommit() { status.set(CanCommit); }
/** Clears this instruction as being ready to commit. */
void clearCanCommit() { status.reset(CanCommit); }
/** Returns whether or not this instruction is ready to commit. */
bool readyToCommit() const { return status[CanCommit]; }
void setAtCommit() { status.set(AtCommit); }
bool isAtCommit() { return status[AtCommit]; }
/** Sets this instruction as committed. */
void setCommitted() { status.set(Committed); }
/** Returns whether or not this instruction is committed. */
bool isCommitted() const { return status[Committed]; }
/** Sets this instruction as squashed. */
void setSquashed();
/** Returns whether or not this instruction is squashed. */
bool isSquashed() const { return status[Squashed]; }
//Instruction Queue Entry
//-----------------------
/** Sets this instruction as a entry the IQ. */
void setInIQ() { status.set(IqEntry); }
/** Sets this instruction as a entry the IQ. */
void clearInIQ() { status.reset(IqEntry); }
/** Returns whether or not this instruction has issued. */
bool isInIQ() const { return status[IqEntry]; }
/** Sets this instruction as squashed in the IQ. */
void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
/** Returns whether or not this instruction is squashed in the IQ. */
bool isSquashedInIQ() const { return status[SquashedInIQ]; }
//Load / Store Queue Functions
//-----------------------
/** Sets this instruction as a entry the LSQ. */
void setInLSQ() { status.set(LsqEntry); }
/** Sets this instruction as a entry the LSQ. */
void removeInLSQ() { status.reset(LsqEntry); }
/** Returns whether or not this instruction is in the LSQ. */
bool isInLSQ() const { return status[LsqEntry]; }
/** Sets this instruction as squashed in the LSQ. */
void setSquashedInLSQ() { status.set(SquashedInLSQ); status.set(Squashed);}
/** Returns whether or not this instruction is squashed in the LSQ. */
bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
//Reorder Buffer Functions
//-----------------------
/** Sets this instruction as a entry the ROB. */
void setInROB() { status.set(RobEntry); }
/** Sets this instruction as a entry the ROB. */
void clearInROB() { status.reset(RobEntry); }
/** Returns whether or not this instruction is in the ROB. */
bool isInROB() const { return status[RobEntry]; }
/** Sets this instruction as squashed in the ROB. */
void setSquashedInROB() { status.set(SquashedInROB); }
/** Returns whether or not this instruction is squashed in the ROB. */
bool isSquashedInROB() const { return status[SquashedInROB]; }
/** Returns whether pinned registers are renamed */
bool isPinnedRegsRenamed() const { return status[PinnedRegsRenamed]; }
/** Sets the destination registers as renamed */
void
setPinnedRegsRenamed()
{
assert(!status[PinnedRegsSquashDone]);
assert(!status[PinnedRegsWritten]);
status.set(PinnedRegsRenamed);
}
/** Returns whether destination registers are written */
bool isPinnedRegsWritten() const { return status[PinnedRegsWritten]; }
/** Sets destination registers as written */
void
setPinnedRegsWritten()
{
assert(!status[PinnedRegsSquashDone]);
assert(status[PinnedRegsRenamed]);
status.set(PinnedRegsWritten);
}
/** Return whether dest registers' pinning status updated after squash */
bool
isPinnedRegsSquashDone() const { return status[PinnedRegsSquashDone]; }
/** Sets dest registers' status updated after squash */
void
setPinnedRegsSquashDone() {
assert(!status[PinnedRegsSquashDone]);
status.set(PinnedRegsSquashDone);
}
/** Read the PC state of this instruction. */
TheISA::PCState pcState() const override { return pc; }
/** Set the PC state of this instruction. */
void pcState(const TheISA::PCState &val) override { pc = val; }
/** Read the PC of this instruction. */
Addr instAddr() const { return pc.instAddr(); }
/** Read the PC of the next instruction. */
Addr nextInstAddr() const { return pc.nextInstAddr(); }
/**Read the micro PC of this instruction. */
Addr microPC() const { return pc.microPC(); }
bool readPredicate() const override { return instFlags[Predicate]; }
void
setPredicate(bool val) override
{
instFlags[Predicate] = val;
if (traceData) {
traceData->setPredicate(val);
}
}
bool
readMemAccPredicate() const override
{
return instFlags[MemAccPredicate];
}
void
setMemAccPredicate(bool val) override
{
instFlags[MemAccPredicate] = val;
}
/** Sets the thread id. */
void setTid(ThreadID tid) { threadNumber = tid; }
/** Sets the pointer to the thread state. */
void setThreadState(ImplState *state) { thread = state; }
/** Returns the thread context. */
ThreadContext *tcBase() const override { return thread->getTC(); }
public:
/** Returns whether or not the eff. addr. source registers are ready. */
bool eaSrcsReady() const;
/** Is this instruction's memory access strictly ordered? */
bool strictlyOrdered() const { return instFlags[IsStrictlyOrdered]; }
void strictlyOrdered(bool so) { instFlags[IsStrictlyOrdered] = so; }
/** Has this instruction generated a memory request. */
bool hasRequest() const { return instFlags[ReqMade]; }
/** Assert this instruction has generated a memory request. */
void setRequest() { instFlags[ReqMade] = true; }
/** Returns iterator to this instruction in the list of all insts. */
ListIt &getInstListIt() { return instListIt; }
/** Sets iterator for this instruction in the list of all insts. */
void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
public:
/** Returns the number of consecutive store conditional failures. */
unsigned int
readStCondFailures() const override
{
return thread->storeCondFailures;
}
/** Sets the number of consecutive store conditional failures. */
void
setStCondFailures(unsigned int sc_failures) override
{
thread->storeCondFailures = sc_failures;
}
public:
// monitor/mwait funtions
void
armMonitor(Addr address) override
{
cpu->armMonitor(threadNumber, address);
}
bool
mwait(PacketPtr pkt) override
{
return cpu->mwait(threadNumber, pkt);
}
void
mwaitAtomic(ThreadContext *tc) override
{
return cpu->mwaitAtomic(threadNumber, tc, cpu->mmu);
}
AddressMonitor *
getAddrMonitor() override
{
return cpu->getCpuAddrMonitor(threadNumber);
}
};
template<class Impl>
Fault
BaseDynInst<Impl>::initiateMemRead(Addr addr, unsigned size,
Request::Flags flags,
const std::vector<bool> &byte_enable)
{
assert(byte_enable.size() == size);
return cpu->pushRequest(
dynamic_cast<typename DynInstPtr::PtrType>(this),
/* ld */ true, nullptr, size, addr, flags, nullptr, nullptr,
byte_enable);
}
template<class Impl>
Fault
BaseDynInst<Impl>::initiateHtmCmd(Request::Flags flags)
{
return cpu->pushRequest(
dynamic_cast<typename DynInstPtr::PtrType>(this),
/* ld */ true, nullptr, 8, 0x0ul, flags, nullptr, nullptr);
}
template<class Impl>
Fault
BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size, Addr addr,
Request::Flags flags, uint64_t *res,
const std::vector<bool> &byte_enable)
{
assert(byte_enable.size() == size);
return cpu->pushRequest(
dynamic_cast<typename DynInstPtr::PtrType>(this),
/* st */ false, data, size, addr, flags, res, nullptr,
byte_enable);
}
template<class Impl>
Fault
BaseDynInst<Impl>::initiateMemAMO(Addr addr, unsigned size,
Request::Flags flags,
AtomicOpFunctorPtr amo_op)
{
// atomic memory instructions do not have data to be written to memory yet
// since the atomic operations will be executed directly in cache/memory.
// Therefore, its `data` field is nullptr.
// Atomic memory requests need to carry their `amo_op` fields to cache/
// memory
return cpu->pushRequest(
dynamic_cast<typename DynInstPtr::PtrType>(this),
/* atomic */ false, nullptr, size, addr, flags, nullptr,
std::move(amo_op), std::vector<bool>(size, true));
}
#endif // __CPU_BASE_DYN_INST_HH__