| /* |
| * Copyright (c) 2014 Advanced Micro Devices, Inc. |
| * Copyright (c) 2007 The Hewlett-Packard Development Company |
| * All rights reserved. |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2003-2006 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Gabe Black |
| * Ali Saidi |
| */ |
| |
| #include "arch/x86/process.hh" |
| |
| #include <string> |
| #include <vector> |
| |
| #include "arch/x86/isa_traits.hh" |
| #include "arch/x86/regs/misc.hh" |
| #include "arch/x86/regs/segment.hh" |
| #include "arch/x86/system.hh" |
| #include "arch/x86/types.hh" |
| #include "base/loader/elf_object.hh" |
| #include "base/loader/object_file.hh" |
| #include "base/misc.hh" |
| #include "base/trace.hh" |
| #include "cpu/thread_context.hh" |
| #include "debug/Stack.hh" |
| #include "mem/multi_level_page_table.hh" |
| #include "mem/page_table.hh" |
| #include "sim/aux_vector.hh" |
| #include "sim/process_impl.hh" |
| #include "sim/syscall_desc.hh" |
| #include "sim/syscall_return.hh" |
| #include "sim/system.hh" |
| |
| using namespace std; |
| using namespace X86ISA; |
| |
| static const int ArgumentReg[] = { |
| INTREG_RDI, |
| INTREG_RSI, |
| INTREG_RDX, |
| // This argument register is r10 for syscalls and rcx for C. |
| INTREG_R10W, |
| // INTREG_RCX, |
| INTREG_R8W, |
| INTREG_R9W |
| }; |
| |
| static const int NumArgumentRegs M5_VAR_USED = |
| sizeof(ArgumentReg) / sizeof(const int); |
| |
| static const int ArgumentReg32[] = { |
| INTREG_EBX, |
| INTREG_ECX, |
| INTREG_EDX, |
| INTREG_ESI, |
| INTREG_EDI, |
| INTREG_EBP |
| }; |
| |
| static const int NumArgumentRegs32 M5_VAR_USED = |
| sizeof(ArgumentReg) / sizeof(const int); |
| |
| X86Process::X86Process(ProcessParams * params, ObjectFile *objFile, |
| SyscallDesc *_syscallDescs, int _numSyscallDescs) |
| : Process(params, objFile), syscallDescs(_syscallDescs), |
| numSyscallDescs(_numSyscallDescs) |
| { |
| } |
| |
| void X86Process::clone(ThreadContext *old_tc, ThreadContext *new_tc, |
| Process *p, TheISA::IntReg flags) |
| { |
| Process::clone(old_tc, new_tc, p, flags); |
| X86Process *process = (X86Process*)p; |
| *process = *this; |
| } |
| |
| X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile, |
| SyscallDesc *_syscallDescs, int _numSyscallDescs) |
| : X86Process(params, objFile, _syscallDescs, _numSyscallDescs) |
| { |
| |
| vsyscallPage.base = 0xffffffffff600000ULL; |
| vsyscallPage.size = PageBytes; |
| vsyscallPage.vtimeOffset = 0x400; |
| vsyscallPage.vgettimeofdayOffset = 0x0; |
| |
| Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() + |
| objFile->bssSize(), PageBytes); |
| Addr stack_base = 0x7FFFFFFFF000ULL; |
| Addr max_stack_size = 8 * 1024 * 1024; |
| Addr next_thread_stack_base = stack_base - max_stack_size; |
| Addr mmap_end = 0x7FFFF7FFF000ULL; |
| |
| memState = make_shared<MemState>(brk_point, stack_base, max_stack_size, |
| next_thread_stack_base, mmap_end); |
| } |
| |
| void |
| I386Process::syscall(int64_t callnum, ThreadContext *tc, Fault *fault) |
| { |
| TheISA::PCState pc = tc->pcState(); |
| Addr eip = pc.pc(); |
| if (eip >= vsyscallPage.base && |
| eip < vsyscallPage.base + vsyscallPage.size) { |
| pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset); |
| tc->pcState(pc); |
| } |
| X86Process::syscall(callnum, tc, fault); |
| } |
| |
| |
| I386Process::I386Process(ProcessParams *params, ObjectFile *objFile, |
| SyscallDesc *_syscallDescs, int _numSyscallDescs) |
| : X86Process(params, objFile, _syscallDescs, _numSyscallDescs) |
| { |
| _gdtStart = ULL(0xffffd000); |
| _gdtSize = PageBytes; |
| |
| vsyscallPage.base = 0xffffe000ULL; |
| vsyscallPage.size = PageBytes; |
| vsyscallPage.vsyscallOffset = 0x400; |
| vsyscallPage.vsysexitOffset = 0x410; |
| |
| Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() + |
| objFile->bssSize(), PageBytes); |
| Addr stack_base = _gdtStart; |
| Addr max_stack_size = 8 * 1024 * 1024; |
| Addr next_thread_stack_base = stack_base - max_stack_size; |
| Addr mmap_end = 0xB7FFF000ULL; |
| |
| memState = make_shared<MemState>(brk_point, stack_base, max_stack_size, |
| next_thread_stack_base, mmap_end); |
| } |
| |
| SyscallDesc* |
| X86Process::getDesc(int callnum) |
| { |
| if (callnum < 0 || callnum >= numSyscallDescs) |
| return NULL; |
| return &syscallDescs[callnum]; |
| } |
| |
| void |
| X86_64Process::initState() |
| { |
| X86Process::initState(); |
| |
| argsInit(PageBytes); |
| |
| // Set up the vsyscall page for this process. |
| allocateMem(vsyscallPage.base, vsyscallPage.size); |
| uint8_t vtimeBlob[] = { |
| 0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00, // mov $0xc9,%rax |
| 0x0f,0x05, // syscall |
| 0xc3 // retq |
| }; |
| initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset, |
| vtimeBlob, sizeof(vtimeBlob)); |
| |
| uint8_t vgettimeofdayBlob[] = { |
| 0x48,0xc7,0xc0,0x60,0x00,0x00,0x00, // mov $0x60,%rax |
| 0x0f,0x05, // syscall |
| 0xc3 // retq |
| }; |
| initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset, |
| vgettimeofdayBlob, sizeof(vgettimeofdayBlob)); |
| |
| if (kvmInSE) { |
| PortProxy physProxy = system->physProxy; |
| |
| /* |
| * Set up the gdt. |
| */ |
| uint8_t numGDTEntries = 0; |
| uint64_t nullDescriptor = 0; |
| physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8, |
| (uint8_t *)(&nullDescriptor), 8); |
| numGDTEntries++; |
| |
| SegDescriptor initDesc = 0; |
| initDesc.type.codeOrData = 0; // code or data type |
| initDesc.type.c = 0; // conforming |
| initDesc.type.r = 1; // readable |
| initDesc.dpl = 0; // privilege |
| initDesc.p = 1; // present |
| initDesc.l = 1; // longmode - 64 bit |
| initDesc.d = 0; // operand size |
| initDesc.g = 1; // granularity |
| initDesc.s = 1; // system segment |
| initDesc.limitHigh = 0xFFFF; |
| initDesc.limitLow = 0xF; |
| initDesc.baseHigh = 0x0; |
| initDesc.baseLow = 0x0; |
| |
| //64 bit code segment |
| SegDescriptor csLowPLDesc = initDesc; |
| csLowPLDesc.type.codeOrData = 1; |
| csLowPLDesc.dpl = 0; |
| uint64_t csLowPLDescVal = csLowPLDesc; |
| physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8, |
| (uint8_t *)(&csLowPLDescVal), 8); |
| |
| numGDTEntries++; |
| |
| SegSelector csLowPL = 0; |
| csLowPL.si = numGDTEntries - 1; |
| csLowPL.rpl = 0; |
| |
| //64 bit data segment |
| SegDescriptor dsLowPLDesc = initDesc; |
| dsLowPLDesc.type.codeOrData = 0; |
| dsLowPLDesc.dpl = 0; |
| uint64_t dsLowPLDescVal = dsLowPLDesc; |
| physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8, |
| (uint8_t *)(&dsLowPLDescVal), 8); |
| |
| numGDTEntries++; |
| |
| SegSelector dsLowPL = 0; |
| dsLowPL.si = numGDTEntries - 1; |
| dsLowPL.rpl = 0; |
| |
| //64 bit data segment |
| SegDescriptor dsDesc = initDesc; |
| dsDesc.type.codeOrData = 0; |
| dsDesc.dpl = 3; |
| uint64_t dsDescVal = dsDesc; |
| physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8, |
| (uint8_t *)(&dsDescVal), 8); |
| |
| numGDTEntries++; |
| |
| SegSelector ds = 0; |
| ds.si = numGDTEntries - 1; |
| ds.rpl = 3; |
| |
| //64 bit code segment |
| SegDescriptor csDesc = initDesc; |
| csDesc.type.codeOrData = 1; |
| csDesc.dpl = 3; |
| uint64_t csDescVal = csDesc; |
| physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8, |
| (uint8_t *)(&csDescVal), 8); |
| |
| numGDTEntries++; |
| |
| SegSelector cs = 0; |
| cs.si = numGDTEntries - 1; |
| cs.rpl = 3; |
| |
| SegSelector scall = 0; |
| scall.si = csLowPL.si; |
| scall.rpl = 0; |
| |
| SegSelector sret = 0; |
| sret.si = dsLowPL.si; |
| sret.rpl = 3; |
| |
| /* In long mode the TSS has been extended to 16 Bytes */ |
| TSSlow TSSDescLow = 0; |
| TSSDescLow.type = 0xB; |
| TSSDescLow.dpl = 0; // Privelege level 0 |
| TSSDescLow.p = 1; // Present |
| TSSDescLow.g = 1; // Page granularity |
| TSSDescLow.limitHigh = 0xF; |
| TSSDescLow.limitLow = 0xFFFF; |
| TSSDescLow.baseLow = bits(TSSVirtAddr, 23, 0); |
| TSSDescLow.baseHigh = bits(TSSVirtAddr, 31, 24); |
| |
| TSShigh TSSDescHigh = 0; |
| TSSDescHigh.base = bits(TSSVirtAddr, 63, 32); |
| |
| struct TSSDesc { |
| uint64_t low; |
| uint64_t high; |
| } tssDescVal = {TSSDescLow, TSSDescHigh}; |
| |
| physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8, |
| (uint8_t *)(&tssDescVal), sizeof(tssDescVal)); |
| |
| numGDTEntries++; |
| |
| SegSelector tssSel = 0; |
| tssSel.si = numGDTEntries - 1; |
| |
| uint64_t tss_base_addr = (TSSDescHigh.base << 32) | |
| (TSSDescLow.baseHigh << 24) | |
| TSSDescLow.baseLow; |
| uint64_t tss_limit = TSSDescLow.limitLow | (TSSDescLow.limitHigh << 16); |
| |
| SegAttr tss_attr = 0; |
| |
| tss_attr.type = TSSDescLow.type; |
| tss_attr.dpl = TSSDescLow.dpl; |
| tss_attr.present = TSSDescLow.p; |
| tss_attr.granularity = TSSDescLow.g; |
| tss_attr.unusable = 0; |
| |
| for (int i = 0; i < contextIds.size(); i++) { |
| ThreadContext * tc = system->getThreadContext(contextIds[i]); |
| |
| tc->setMiscReg(MISCREG_CS, cs); |
| tc->setMiscReg(MISCREG_DS, ds); |
| tc->setMiscReg(MISCREG_ES, ds); |
| tc->setMiscReg(MISCREG_FS, ds); |
| tc->setMiscReg(MISCREG_GS, ds); |
| tc->setMiscReg(MISCREG_SS, ds); |
| |
| // LDT |
| tc->setMiscReg(MISCREG_TSL, 0); |
| SegAttr tslAttr = 0; |
| tslAttr.present = 1; |
| tslAttr.type = 2; |
| tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr); |
| |
| tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr); |
| tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1); |
| |
| tc->setMiscReg(MISCREG_TR, tssSel); |
| tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr); |
| tc->setMiscReg(MISCREG_TR_EFF_BASE, 0); |
| tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit); |
| tc->setMiscReg(MISCREG_TR_ATTR, tss_attr); |
| |
| //Start using longmode segments. |
| installSegDesc(tc, SEGMENT_REG_CS, csDesc, true); |
| installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true); |
| installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true); |
| installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true); |
| installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true); |
| installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true); |
| |
| Efer efer = 0; |
| efer.sce = 1; // Enable system call extensions. |
| efer.lme = 1; // Enable long mode. |
| efer.lma = 1; // Activate long mode. |
| efer.nxe = 0; // Enable nx support. |
| efer.svme = 1; // Enable svm support for now. |
| efer.ffxsr = 0; // Turn on fast fxsave and fxrstor. |
| tc->setMiscReg(MISCREG_EFER, efer); |
| |
| //Set up the registers that describe the operating mode. |
| CR0 cr0 = 0; |
| cr0.pg = 1; // Turn on paging. |
| cr0.cd = 0; // Don't disable caching. |
| cr0.nw = 0; // This is bit is defined to be ignored. |
| cr0.am = 1; // No alignment checking |
| cr0.wp = 1; // Supervisor mode can write read only pages |
| cr0.ne = 1; |
| cr0.et = 1; // This should always be 1 |
| cr0.ts = 0; // We don't do task switching, so causing fp exceptions |
| // would be pointless. |
| cr0.em = 0; // Allow x87 instructions to execute natively. |
| cr0.mp = 1; // This doesn't really matter, but the manual suggests |
| // setting it to one. |
| cr0.pe = 1; // We're definitely in protected mode. |
| tc->setMiscReg(MISCREG_CR0, cr0); |
| |
| CR0 cr2 = 0; |
| tc->setMiscReg(MISCREG_CR2, cr2); |
| |
| CR3 cr3 = pageTablePhysAddr; |
| tc->setMiscReg(MISCREG_CR3, cr3); |
| |
| CR4 cr4 = 0; |
| //Turn on pae. |
| cr4.osxsave = 1; // Enable XSAVE and Proc Extended States |
| cr4.osxmmexcpt = 1; // Operating System Unmasked Exception |
| cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support |
| cr4.pce = 0; // Performance-Monitoring Counter Enable |
| cr4.pge = 0; // Page-Global Enable |
| cr4.mce = 0; // Machine Check Enable |
| cr4.pae = 1; // Physical-Address Extension |
| cr4.pse = 0; // Page Size Extensions |
| cr4.de = 0; // Debugging Extensions |
| cr4.tsd = 0; // Time Stamp Disable |
| cr4.pvi = 0; // Protected-Mode Virtual Interrupts |
| cr4.vme = 0; // Virtual-8086 Mode Extensions |
| |
| tc->setMiscReg(MISCREG_CR4, cr4); |
| |
| CR4 cr8 = 0; |
| tc->setMiscReg(MISCREG_CR8, cr8); |
| |
| const Addr PageMapLevel4 = pageTablePhysAddr; |
| //Point to the page tables. |
| tc->setMiscReg(MISCREG_CR3, PageMapLevel4); |
| |
| tc->setMiscReg(MISCREG_MXCSR, 0x1f80); |
| |
| tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900); |
| |
| tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr); |
| tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff); |
| |
| tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr); |
| tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff); |
| |
| /* enabling syscall and sysret */ |
| MiscReg star = ((MiscReg)sret << 48) | ((MiscReg)scall << 32); |
| tc->setMiscReg(MISCREG_STAR, star); |
| MiscReg lstar = (MiscReg)syscallCodeVirtAddr; |
| tc->setMiscReg(MISCREG_LSTAR, lstar); |
| MiscReg sfmask = (1 << 8) | (1 << 10); // TF | DF |
| tc->setMiscReg(MISCREG_SF_MASK, sfmask); |
| } |
| |
| /* Set up the content of the TSS and write it to physical memory. */ |
| |
| struct { |
| uint32_t reserved0; // +00h |
| uint32_t RSP0_low; // +04h |
| uint32_t RSP0_high; // +08h |
| uint32_t RSP1_low; // +0Ch |
| uint32_t RSP1_high; // +10h |
| uint32_t RSP2_low; // +14h |
| uint32_t RSP2_high; // +18h |
| uint32_t reserved1; // +1Ch |
| uint32_t reserved2; // +20h |
| uint32_t IST1_low; // +24h |
| uint32_t IST1_high; // +28h |
| uint32_t IST2_low; // +2Ch |
| uint32_t IST2_high; // +30h |
| uint32_t IST3_low; // +34h |
| uint32_t IST3_high; // +38h |
| uint32_t IST4_low; // +3Ch |
| uint32_t IST4_high; // +40h |
| uint32_t IST5_low; // +44h |
| uint32_t IST5_high; // +48h |
| uint32_t IST6_low; // +4Ch |
| uint32_t IST6_high; // +50h |
| uint32_t IST7_low; // +54h |
| uint32_t IST7_high; // +58h |
| uint32_t reserved3; // +5Ch |
| uint32_t reserved4; // +60h |
| uint16_t reserved5; // +64h |
| uint16_t IO_MapBase; // +66h |
| } tss; |
| |
| /** setting Interrupt Stack Table */ |
| uint64_t IST_start = ISTVirtAddr + PageBytes; |
| tss.IST1_low = IST_start; |
| tss.IST1_high = IST_start >> 32; |
| tss.RSP0_low = tss.IST1_low; |
| tss.RSP0_high = tss.IST1_high; |
| tss.RSP1_low = tss.IST1_low; |
| tss.RSP1_high = tss.IST1_high; |
| tss.RSP2_low = tss.IST1_low; |
| tss.RSP2_high = tss.IST1_high; |
| physProxy.writeBlob(TSSPhysAddr, (uint8_t *)(&tss), sizeof(tss)); |
| |
| /* Setting IDT gates */ |
| GateDescriptorLow PFGateLow = 0; |
| PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16); |
| PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0); |
| PFGateLow.selector = csLowPL; |
| PFGateLow.p = 1; |
| PFGateLow.dpl = 0; |
| PFGateLow.type = 0xe; // gate interrupt type |
| PFGateLow.IST = 0; // setting IST to 0 and using RSP0 |
| |
| GateDescriptorHigh PFGateHigh = 0; |
| PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32); |
| |
| struct { |
| uint64_t low; |
| uint64_t high; |
| } PFGate = {PFGateLow, PFGateHigh}; |
| |
| physProxy.writeBlob(IDTPhysAddr + 0xE0, |
| (uint8_t *)(&PFGate), sizeof(PFGate)); |
| |
| /* System call handler */ |
| uint8_t syscallBlob[] = { |
| // mov %rax, (0xffffc90000005600) |
| 0x48, 0xa3, 0x00, 0x60, 0x00, |
| 0x00, 0x00, 0xc9, 0xff, 0xff, |
| // sysret |
| 0x48, 0x0f, 0x07 |
| }; |
| |
| physProxy.writeBlob(syscallCodePhysAddr, |
| syscallBlob, sizeof(syscallBlob)); |
| |
| /** Page fault handler */ |
| uint8_t faultBlob[] = { |
| // mov %rax, (0xffffc90000005700) |
| 0x48, 0xa3, 0x00, 0x61, 0x00, |
| 0x00, 0x00, 0xc9, 0xff, 0xff, |
| // add $0x8, %rsp # skip error |
| 0x48, 0x83, 0xc4, 0x08, |
| // iretq |
| 0x48, 0xcf |
| }; |
| |
| physProxy.writeBlob(PFHandlerPhysAddr, faultBlob, sizeof(faultBlob)); |
| |
| MultiLevelPageTable<PageTableOps> *pt = |
| dynamic_cast<MultiLevelPageTable<PageTableOps> *>(pTable); |
| |
| /* Syscall handler */ |
| pt->map(syscallCodeVirtAddr, syscallCodePhysAddr, PageBytes, false); |
| /* GDT */ |
| pt->map(GDTVirtAddr, GDTPhysAddr, PageBytes, false); |
| /* IDT */ |
| pt->map(IDTVirtAddr, IDTPhysAddr, PageBytes, false); |
| /* TSS */ |
| pt->map(TSSVirtAddr, TSSPhysAddr, PageBytes, false); |
| /* IST */ |
| pt->map(ISTVirtAddr, ISTPhysAddr, PageBytes, false); |
| /* PF handler */ |
| pt->map(PFHandlerVirtAddr, PFHandlerPhysAddr, PageBytes, false); |
| /* MMIO region for m5ops */ |
| pt->map(MMIORegionVirtAddr, MMIORegionPhysAddr, 16*PageBytes, false); |
| } else { |
| for (int i = 0; i < contextIds.size(); i++) { |
| ThreadContext * tc = system->getThreadContext(contextIds[i]); |
| |
| SegAttr dataAttr = 0; |
| dataAttr.dpl = 3; |
| dataAttr.unusable = 0; |
| dataAttr.defaultSize = 1; |
| dataAttr.longMode = 1; |
| dataAttr.avl = 0; |
| dataAttr.granularity = 1; |
| dataAttr.present = 1; |
| dataAttr.type = 3; |
| dataAttr.writable = 1; |
| dataAttr.readable = 1; |
| dataAttr.expandDown = 0; |
| dataAttr.system = 1; |
| |
| // Initialize the segment registers. |
| for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) { |
| tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0); |
| tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0); |
| tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr); |
| } |
| |
| SegAttr csAttr = 0; |
| csAttr.dpl = 3; |
| csAttr.unusable = 0; |
| csAttr.defaultSize = 0; |
| csAttr.longMode = 1; |
| csAttr.avl = 0; |
| csAttr.granularity = 1; |
| csAttr.present = 1; |
| csAttr.type = 10; |
| csAttr.writable = 0; |
| csAttr.readable = 1; |
| csAttr.expandDown = 0; |
| csAttr.system = 1; |
| |
| tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr); |
| |
| Efer efer = 0; |
| efer.sce = 1; // Enable system call extensions. |
| efer.lme = 1; // Enable long mode. |
| efer.lma = 1; // Activate long mode. |
| efer.nxe = 1; // Enable nx support. |
| efer.svme = 0; // Disable svm support for now. It isn't implemented. |
| efer.ffxsr = 1; // Turn on fast fxsave and fxrstor. |
| tc->setMiscReg(MISCREG_EFER, efer); |
| |
| // Set up the registers that describe the operating mode. |
| CR0 cr0 = 0; |
| cr0.pg = 1; // Turn on paging. |
| cr0.cd = 0; // Don't disable caching. |
| cr0.nw = 0; // This is bit is defined to be ignored. |
| cr0.am = 0; // No alignment checking |
| cr0.wp = 0; // Supervisor mode can write read only pages |
| cr0.ne = 1; |
| cr0.et = 1; // This should always be 1 |
| cr0.ts = 0; // We don't do task switching, so causing fp exceptions |
| // would be pointless. |
| cr0.em = 0; // Allow x87 instructions to execute natively. |
| cr0.mp = 1; // This doesn't really matter, but the manual suggests |
| // setting it to one. |
| cr0.pe = 1; // We're definitely in protected mode. |
| tc->setMiscReg(MISCREG_CR0, cr0); |
| |
| tc->setMiscReg(MISCREG_MXCSR, 0x1f80); |
| } |
| } |
| } |
| |
| void |
| I386Process::initState() |
| { |
| X86Process::initState(); |
| |
| argsInit(PageBytes); |
| |
| /* |
| * Set up a GDT for this process. The whole GDT wouldn't really be for |
| * this process, but the only parts we care about are. |
| */ |
| allocateMem(_gdtStart, _gdtSize); |
| uint64_t zero = 0; |
| assert(_gdtSize % sizeof(zero) == 0); |
| for (Addr gdtCurrent = _gdtStart; |
| gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) { |
| initVirtMem.write(gdtCurrent, zero); |
| } |
| |
| // Set up the vsyscall page for this process. |
| allocateMem(vsyscallPage.base, vsyscallPage.size); |
| uint8_t vsyscallBlob[] = { |
| 0x51, // push %ecx |
| 0x52, // push %edp |
| 0x55, // push %ebp |
| 0x89, 0xe5, // mov %esp, %ebp |
| 0x0f, 0x34 // sysenter |
| }; |
| initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset, |
| vsyscallBlob, sizeof(vsyscallBlob)); |
| |
| uint8_t vsysexitBlob[] = { |
| 0x5d, // pop %ebp |
| 0x5a, // pop %edx |
| 0x59, // pop %ecx |
| 0xc3 // ret |
| }; |
| initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset, |
| vsysexitBlob, sizeof(vsysexitBlob)); |
| |
| for (int i = 0; i < contextIds.size(); i++) { |
| ThreadContext * tc = system->getThreadContext(contextIds[i]); |
| |
| SegAttr dataAttr = 0; |
| dataAttr.dpl = 3; |
| dataAttr.unusable = 0; |
| dataAttr.defaultSize = 1; |
| dataAttr.longMode = 0; |
| dataAttr.avl = 0; |
| dataAttr.granularity = 1; |
| dataAttr.present = 1; |
| dataAttr.type = 3; |
| dataAttr.writable = 1; |
| dataAttr.readable = 1; |
| dataAttr.expandDown = 0; |
| dataAttr.system = 1; |
| |
| // Initialize the segment registers. |
| for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) { |
| tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0); |
| tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0); |
| tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr); |
| tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB); |
| tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1)); |
| } |
| |
| SegAttr csAttr = 0; |
| csAttr.dpl = 3; |
| csAttr.unusable = 0; |
| csAttr.defaultSize = 1; |
| csAttr.longMode = 0; |
| csAttr.avl = 0; |
| csAttr.granularity = 1; |
| csAttr.present = 1; |
| csAttr.type = 0xa; |
| csAttr.writable = 0; |
| csAttr.readable = 1; |
| csAttr.expandDown = 0; |
| csAttr.system = 1; |
| |
| tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr); |
| |
| tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart); |
| tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart); |
| tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1); |
| |
| // Set the LDT selector to 0 to deactivate it. |
| tc->setMiscRegNoEffect(MISCREG_TSL, 0); |
| |
| Efer efer = 0; |
| efer.sce = 1; // Enable system call extensions. |
| efer.lme = 1; // Enable long mode. |
| efer.lma = 0; // Deactivate long mode. |
| efer.nxe = 1; // Enable nx support. |
| efer.svme = 0; // Disable svm support for now. It isn't implemented. |
| efer.ffxsr = 1; // Turn on fast fxsave and fxrstor. |
| tc->setMiscReg(MISCREG_EFER, efer); |
| |
| // Set up the registers that describe the operating mode. |
| CR0 cr0 = 0; |
| cr0.pg = 1; // Turn on paging. |
| cr0.cd = 0; // Don't disable caching. |
| cr0.nw = 0; // This is bit is defined to be ignored. |
| cr0.am = 0; // No alignment checking |
| cr0.wp = 0; // Supervisor mode can write read only pages |
| cr0.ne = 1; |
| cr0.et = 1; // This should always be 1 |
| cr0.ts = 0; // We don't do task switching, so causing fp exceptions |
| // would be pointless. |
| cr0.em = 0; // Allow x87 instructions to execute natively. |
| cr0.mp = 1; // This doesn't really matter, but the manual suggests |
| // setting it to one. |
| cr0.pe = 1; // We're definitely in protected mode. |
| tc->setMiscReg(MISCREG_CR0, cr0); |
| |
| tc->setMiscReg(MISCREG_MXCSR, 0x1f80); |
| } |
| } |
| |
| template<class IntType> |
| void |
| X86Process::argsInit(int pageSize, |
| std::vector<AuxVector<IntType> > extraAuxvs) |
| { |
| int intSize = sizeof(IntType); |
| |
| typedef AuxVector<IntType> auxv_t; |
| std::vector<auxv_t> auxv = extraAuxvs; |
| |
| string filename; |
| if (argv.size() < 1) |
| filename = ""; |
| else |
| filename = argv[0]; |
| |
| // We want 16 byte alignment |
| uint64_t align = 16; |
| |
| // Patch the ld_bias for dynamic executables. |
| updateBias(); |
| |
| // load object file into target memory |
| objFile->loadSections(initVirtMem); |
| |
| enum X86CpuFeature { |
| X86_OnboardFPU = 1 << 0, |
| X86_VirtualModeExtensions = 1 << 1, |
| X86_DebuggingExtensions = 1 << 2, |
| X86_PageSizeExtensions = 1 << 3, |
| |
| X86_TimeStampCounter = 1 << 4, |
| X86_ModelSpecificRegisters = 1 << 5, |
| X86_PhysicalAddressExtensions = 1 << 6, |
| X86_MachineCheckExtensions = 1 << 7, |
| |
| X86_CMPXCHG8Instruction = 1 << 8, |
| X86_OnboardAPIC = 1 << 9, |
| X86_SYSENTER_SYSEXIT = 1 << 11, |
| |
| X86_MemoryTypeRangeRegisters = 1 << 12, |
| X86_PageGlobalEnable = 1 << 13, |
| X86_MachineCheckArchitecture = 1 << 14, |
| X86_CMOVInstruction = 1 << 15, |
| |
| X86_PageAttributeTable = 1 << 16, |
| X86_36BitPSEs = 1 << 17, |
| X86_ProcessorSerialNumber = 1 << 18, |
| X86_CLFLUSHInstruction = 1 << 19, |
| |
| X86_DebugTraceStore = 1 << 21, |
| X86_ACPIViaMSR = 1 << 22, |
| X86_MultimediaExtensions = 1 << 23, |
| |
| X86_FXSAVE_FXRSTOR = 1 << 24, |
| X86_StreamingSIMDExtensions = 1 << 25, |
| X86_StreamingSIMDExtensions2 = 1 << 26, |
| X86_CPUSelfSnoop = 1 << 27, |
| |
| X86_HyperThreading = 1 << 28, |
| X86_AutomaticClockControl = 1 << 29, |
| X86_IA64Processor = 1 << 30 |
| }; |
| |
| // Setup the auxiliary vectors. These will already have endian |
| // conversion. Auxiliary vectors are loaded only for elf formatted |
| // executables; the auxv is responsible for passing information from |
| // the OS to the interpreter. |
| ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile); |
| if (elfObject) { |
| uint64_t features = |
| X86_OnboardFPU | |
| X86_VirtualModeExtensions | |
| X86_DebuggingExtensions | |
| X86_PageSizeExtensions | |
| X86_TimeStampCounter | |
| X86_ModelSpecificRegisters | |
| X86_PhysicalAddressExtensions | |
| X86_MachineCheckExtensions | |
| X86_CMPXCHG8Instruction | |
| X86_OnboardAPIC | |
| X86_SYSENTER_SYSEXIT | |
| X86_MemoryTypeRangeRegisters | |
| X86_PageGlobalEnable | |
| X86_MachineCheckArchitecture | |
| X86_CMOVInstruction | |
| X86_PageAttributeTable | |
| X86_36BitPSEs | |
| // X86_ProcessorSerialNumber | |
| X86_CLFLUSHInstruction | |
| // X86_DebugTraceStore | |
| // X86_ACPIViaMSR | |
| X86_MultimediaExtensions | |
| X86_FXSAVE_FXRSTOR | |
| X86_StreamingSIMDExtensions | |
| X86_StreamingSIMDExtensions2 | |
| // X86_CPUSelfSnoop | |
| // X86_HyperThreading | |
| // X86_AutomaticClockControl | |
| // X86_IA64Processor | |
| 0; |
| |
| // Bits which describe the system hardware capabilities |
| // XXX Figure out what these should be |
| auxv.push_back(auxv_t(M5_AT_HWCAP, features)); |
| // The system page size |
| auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes)); |
| // Frequency at which times() increments |
| // Defined to be 100 in the kernel source. |
| auxv.push_back(auxv_t(M5_AT_CLKTCK, 100)); |
| // This is the virtual address of the program header tables if they |
| // appear in the executable image. |
| auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable())); |
| // This is the size of a program header entry from the elf file. |
| auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize())); |
| // This is the number of program headers from the original elf file. |
| auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount())); |
| // This is the base address of the ELF interpreter; it should be |
| // zero for static executables or contain the base address for |
| // dynamic executables. |
| auxv.push_back(auxv_t(M5_AT_BASE, getBias())); |
| // XXX Figure out what this should be. |
| auxv.push_back(auxv_t(M5_AT_FLAGS, 0)); |
| // The entry point to the program |
| auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint())); |
| // Different user and group IDs |
| auxv.push_back(auxv_t(M5_AT_UID, uid())); |
| auxv.push_back(auxv_t(M5_AT_EUID, euid())); |
| auxv.push_back(auxv_t(M5_AT_GID, gid())); |
| auxv.push_back(auxv_t(M5_AT_EGID, egid())); |
| // Whether to enable "secure mode" in the executable |
| auxv.push_back(auxv_t(M5_AT_SECURE, 0)); |
| // The address of 16 "random" bytes. |
| auxv.push_back(auxv_t(M5_AT_RANDOM, 0)); |
| // The name of the program |
| auxv.push_back(auxv_t(M5_AT_EXECFN, 0)); |
| // The platform string |
| auxv.push_back(auxv_t(M5_AT_PLATFORM, 0)); |
| } |
| |
| // Figure out how big the initial stack needs to be |
| |
| // A sentry NULL void pointer at the top of the stack. |
| int sentry_size = intSize; |
| |
| // This is the name of the file which is present on the initial stack |
| // It's purpose is to let the user space linker examine the original file. |
| int file_name_size = filename.size() + 1; |
| |
| const int numRandomBytes = 16; |
| int aux_data_size = numRandomBytes; |
| |
| string platform = "x86_64"; |
| aux_data_size += platform.size() + 1; |
| |
| int env_data_size = 0; |
| for (int i = 0; i < envp.size(); ++i) |
| env_data_size += envp[i].size() + 1; |
| int arg_data_size = 0; |
| for (int i = 0; i < argv.size(); ++i) |
| arg_data_size += argv[i].size() + 1; |
| |
| // The info_block needs to be padded so its size is a multiple of the |
| // alignment mask. Also, it appears that there needs to be at least some |
| // padding, so if the size is already a multiple, we need to increase it |
| // anyway. |
| int base_info_block_size = |
| sentry_size + file_name_size + env_data_size + arg_data_size; |
| |
| int info_block_size = roundUp(base_info_block_size, align); |
| |
| int info_block_padding = info_block_size - base_info_block_size; |
| |
| // Each auxiliary vector is two 8 byte words |
| int aux_array_size = intSize * 2 * (auxv.size() + 1); |
| |
| int envp_array_size = intSize * (envp.size() + 1); |
| int argv_array_size = intSize * (argv.size() + 1); |
| |
| int argc_size = intSize; |
| |
| // Figure out the size of the contents of the actual initial frame |
| int frame_size = |
| aux_array_size + |
| envp_array_size + |
| argv_array_size + |
| argc_size; |
| |
| // There needs to be padding after the auxiliary vector data so that the |
| // very bottom of the stack is aligned properly. |
| int partial_size = frame_size + aux_data_size; |
| int aligned_partial_size = roundUp(partial_size, align); |
| int aux_padding = aligned_partial_size - partial_size; |
| |
| int space_needed = |
| info_block_size + |
| aux_data_size + |
| aux_padding + |
| frame_size; |
| |
| Addr stack_base = memState->getStackBase(); |
| |
| Addr stack_min = stack_base - space_needed; |
| stack_min = roundDown(stack_min, align); |
| |
| unsigned stack_size = stack_base - stack_min; |
| stack_size = roundUp(stack_size, pageSize); |
| memState->setStackSize(stack_size); |
| |
| // map memory |
| Addr stack_end = roundDown(stack_base - stack_size, pageSize); |
| |
| DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size); |
| allocateMem(stack_end, stack_size); |
| |
| // map out initial stack contents |
| IntType sentry_base = stack_base - sentry_size; |
| IntType file_name_base = sentry_base - file_name_size; |
| IntType env_data_base = file_name_base - env_data_size; |
| IntType arg_data_base = env_data_base - arg_data_size; |
| IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size; |
| IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding; |
| IntType envp_array_base = auxv_array_base - envp_array_size; |
| IntType argv_array_base = envp_array_base - argv_array_size; |
| IntType argc_base = argv_array_base - argc_size; |
| |
| DPRINTF(Stack, "The addresses of items on the initial stack:\n"); |
| DPRINTF(Stack, "0x%x - file name\n", file_name_base); |
| DPRINTF(Stack, "0x%x - env data\n", env_data_base); |
| DPRINTF(Stack, "0x%x - arg data\n", arg_data_base); |
| DPRINTF(Stack, "0x%x - aux data\n", aux_data_base); |
| DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base); |
| DPRINTF(Stack, "0x%x - envp array\n", envp_array_base); |
| DPRINTF(Stack, "0x%x - argv array\n", argv_array_base); |
| DPRINTF(Stack, "0x%x - argc \n", argc_base); |
| DPRINTF(Stack, "0x%x - stack min\n", stack_min); |
| |
| // write contents to stack |
| |
| // figure out argc |
| IntType argc = argv.size(); |
| IntType guestArgc = X86ISA::htog(argc); |
| |
| // Write out the sentry void * |
| IntType sentry_NULL = 0; |
| initVirtMem.writeBlob(sentry_base, (uint8_t*)&sentry_NULL, sentry_size); |
| |
| // Write the file name |
| initVirtMem.writeString(file_name_base, filename.c_str()); |
| |
| // Fix up the aux vectors which point to data |
| assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM); |
| auxv[auxv.size() - 3].a_val = aux_data_base; |
| assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN); |
| auxv[auxv.size() - 2].a_val = argv_array_base; |
| assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM); |
| auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes; |
| |
| |
| // Copy the aux stuff |
| for (int x = 0; x < auxv.size(); x++) { |
| initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize, |
| (uint8_t*)&(auxv[x].a_type), intSize); |
| initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize, |
| (uint8_t*)&(auxv[x].a_val), intSize); |
| } |
| // Write out the terminating zeroed auxiliary vector |
| const uint64_t zero = 0; |
| initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize, |
| (uint8_t*)&zero, intSize); |
| initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize, |
| (uint8_t*)&zero, intSize); |
| |
| initVirtMem.writeString(aux_data_base, platform.c_str()); |
| |
| copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); |
| copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); |
| |
| initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize); |
| |
| ThreadContext *tc = system->getThreadContext(contextIds[0]); |
| // Set the stack pointer register |
| tc->setIntReg(StackPointerReg, stack_min); |
| |
| // There doesn't need to be any segment base added in since we're dealing |
| // with the flat segmentation model. |
| tc->pcState(getStartPC()); |
| |
| // Align the "stack_min" to a page boundary. |
| memState->setStackMin(roundDown(stack_min, pageSize)); |
| } |
| |
| void |
| X86_64Process::argsInit(int pageSize) |
| { |
| std::vector<AuxVector<uint64_t> > extraAuxvs; |
| extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR, |
| vsyscallPage.base)); |
| X86Process::argsInit<uint64_t>(pageSize, extraAuxvs); |
| } |
| |
| void |
| I386Process::argsInit(int pageSize) |
| { |
| std::vector<AuxVector<uint32_t> > extraAuxvs; |
| //Tell the binary where the vsyscall part of the vsyscall page is. |
| extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO, |
| vsyscallPage.base + vsyscallPage.vsyscallOffset)); |
| extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR, |
| vsyscallPage.base)); |
| X86Process::argsInit<uint32_t>(pageSize, extraAuxvs); |
| } |
| |
| void |
| X86Process::setSyscallReturn(ThreadContext *tc, SyscallReturn retval) |
| { |
| tc->setIntReg(INTREG_RAX, retval.encodedValue()); |
| } |
| |
| X86ISA::IntReg |
| X86_64Process::getSyscallArg(ThreadContext *tc, int &i) |
| { |
| assert(i < NumArgumentRegs); |
| return tc->readIntReg(ArgumentReg[i++]); |
| } |
| |
| void |
| X86_64Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val) |
| { |
| assert(i < NumArgumentRegs); |
| return tc->setIntReg(ArgumentReg[i], val); |
| } |
| |
| void |
| X86_64Process::clone(ThreadContext *old_tc, ThreadContext *new_tc, |
| Process *p, TheISA::IntReg flags) |
| { |
| X86Process::clone(old_tc, new_tc, p, flags); |
| ((X86_64Process*)p)->vsyscallPage = vsyscallPage; |
| } |
| |
| X86ISA::IntReg |
| I386Process::getSyscallArg(ThreadContext *tc, int &i) |
| { |
| assert(i < NumArgumentRegs32); |
| return tc->readIntReg(ArgumentReg32[i++]); |
| } |
| |
| X86ISA::IntReg |
| I386Process::getSyscallArg(ThreadContext *tc, int &i, int width) |
| { |
| assert(width == 32 || width == 64); |
| assert(i < NumArgumentRegs); |
| uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32); |
| if (width == 64) |
| retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32); |
| return retVal; |
| } |
| |
| void |
| I386Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val) |
| { |
| assert(i < NumArgumentRegs); |
| return tc->setIntReg(ArgumentReg[i], val); |
| } |
| |
| void |
| I386Process::clone(ThreadContext *old_tc, ThreadContext *new_tc, |
| Process *p, TheISA::IntReg flags) |
| { |
| X86Process::clone(old_tc, new_tc, p, flags); |
| ((I386Process*)p)->vsyscallPage = vsyscallPage; |
| } |