blob: 971782d76e0326b3a59e4098d4118f66fd716add [file] [log] [blame]
# Copyright (c) 2016-2017, 2019 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# System components used by the bigLITTLE.py configuration script
from __future__ import print_function
from __future__ import absolute_import
import six
import m5
from m5.objects import *
m5.util.addToPath('../../')
from common.Caches import *
from common import ObjectList
if six.PY3:
long = int
have_kvm = "ArmV8KvmCPU" in ObjectList.cpu_list.get_names()
have_fastmodel = "FastModelCortexA76" in ObjectList.cpu_list.get_names()
class L1I(L1_ICache):
tag_latency = 1
data_latency = 1
response_latency = 1
mshrs = 4
tgts_per_mshr = 8
size = '48kB'
assoc = 3
class L1D(L1_DCache):
tag_latency = 2
data_latency = 2
response_latency = 1
mshrs = 16
tgts_per_mshr = 16
size = '32kB'
assoc = 2
write_buffers = 16
class WalkCache(PageTableWalkerCache):
tag_latency = 4
data_latency = 4
response_latency = 4
mshrs = 6
tgts_per_mshr = 8
size = '1kB'
assoc = 8
write_buffers = 16
class L2(L2Cache):
tag_latency = 12
data_latency = 12
response_latency = 5
mshrs = 32
tgts_per_mshr = 8
size = '1MB'
assoc = 16
write_buffers = 8
clusivity='mostly_excl'
class L3(Cache):
size = '16MB'
assoc = 16
tag_latency = 20
data_latency = 20
response_latency = 20
mshrs = 20
tgts_per_mshr = 12
clusivity='mostly_excl'
class MemBus(SystemXBar):
badaddr_responder = BadAddr(warn_access="warn")
default = Self.badaddr_responder.pio
class CpuCluster(SubSystem):
def __init__(self, system, num_cpus, cpu_clock, cpu_voltage,
cpu_type, l1i_type, l1d_type, wcache_type, l2_type):
super(CpuCluster, self).__init__()
self._cpu_type = cpu_type
self._l1i_type = l1i_type
self._l1d_type = l1d_type
self._wcache_type = wcache_type
self._l2_type = l2_type
assert num_cpus > 0
self.voltage_domain = VoltageDomain(voltage=cpu_voltage)
self.clk_domain = SrcClockDomain(clock=cpu_clock,
voltage_domain=self.voltage_domain)
self.cpus = [ self._cpu_type(cpu_id=system.numCpus() + idx,
clk_domain=self.clk_domain)
for idx in range(num_cpus) ]
for cpu in self.cpus:
cpu.createThreads()
cpu.createInterruptController()
cpu.socket_id = system.numCpuClusters()
system.addCpuCluster(self, num_cpus)
def requireCaches(self):
return self._cpu_type.require_caches()
def memoryMode(self):
return self._cpu_type.memory_mode()
def addL1(self):
for cpu in self.cpus:
l1i = None if self._l1i_type is None else self._l1i_type()
l1d = None if self._l1d_type is None else self._l1d_type()
iwc = None if self._wcache_type is None else self._wcache_type()
dwc = None if self._wcache_type is None else self._wcache_type()
cpu.addPrivateSplitL1Caches(l1i, l1d, iwc, dwc)
def addL2(self, clk_domain):
if self._l2_type is None:
return
self.toL2Bus = L2XBar(width=64, clk_domain=clk_domain)
self.l2 = self._l2_type()
for cpu in self.cpus:
cpu.connectAllPorts(self.toL2Bus)
self.toL2Bus.master = self.l2.cpu_side
def addPMUs(self, ints, events=[]):
"""
Instantiates 1 ArmPMU per PE. The method is accepting a list of
interrupt numbers (ints) used by the PMU and a list of events to
register in it.
:param ints: List of interrupt numbers. The code will iterate over
the cpu list in order and will assign to every cpu in the cluster
a PMU with the matching interrupt.
:type ints: List[int]
:param events: Additional events to be measured by the PMUs
:type events: List[Union[ProbeEvent, SoftwareIncrement]]
"""
assert len(ints) == len(self.cpus)
for cpu, pint in zip(self.cpus, ints):
int_cls = ArmPPI if pint < 32 else ArmSPI
for isa in cpu.isa:
isa.pmu = ArmPMU(interrupt=int_cls(num=pint))
isa.pmu.addArchEvents(cpu=cpu,
itb=cpu.mmu.itb, dtb=cpu.mmu.dtb,
icache=getattr(cpu, 'icache', None),
dcache=getattr(cpu, 'dcache', None),
l2cache=getattr(self, 'l2', None))
for ev in events:
isa.pmu.addEvent(ev)
def connectMemSide(self, bus):
try:
self.l2.mem_side = bus.slave
except AttributeError:
for cpu in self.cpus:
cpu.connectAllPorts(bus)
class AtomicCluster(CpuCluster):
def __init__(self, system, num_cpus, cpu_clock, cpu_voltage="1.0V"):
cpu_config = [ ObjectList.cpu_list.get("AtomicSimpleCPU"), None,
None, None, None ]
super(AtomicCluster, self).__init__(system, num_cpus, cpu_clock,
cpu_voltage, *cpu_config)
def addL1(self):
pass
class KvmCluster(CpuCluster):
def __init__(self, system, num_cpus, cpu_clock, cpu_voltage="1.0V"):
cpu_config = [ ObjectList.cpu_list.get("ArmV8KvmCPU"), None, None,
None, None ]
super(KvmCluster, self).__init__(system, num_cpus, cpu_clock,
cpu_voltage, *cpu_config)
def addL1(self):
pass
class FastmodelCluster(SubSystem):
def __init__(self, system, num_cpus, cpu_clock, cpu_voltage="1.0V"):
super(FastmodelCluster, self).__init__()
# Setup GIC
gic = system.realview.gic
gic.sc_gic.cpu_affinities = ','.join(
[ '0.0.%d.0' % i for i in range(num_cpus) ])
# Parse the base address of redistributor.
redist_base = gic.get_redist_bases()[0]
redist_frame_size = 0x40000 if gic.sc_gic.has_gicv4_1 else 0x20000
gic.sc_gic.reg_base_per_redistributor = ','.join([
'0.0.%d.0=%#x' % (i, redist_base + redist_frame_size * i)
for i in range(num_cpus)
])
gic_a2t = AmbaToTlmBridge64(amba=gic.amba_m)
gic_t2g = TlmToGem5Bridge64(tlm=gic_a2t.tlm, gem5=system.iobus.slave)
gic_g2t = Gem5ToTlmBridge64(gem5=system.membus.master)
gic_g2t.addr_ranges = gic.get_addr_ranges()
gic_t2a = AmbaFromTlmBridge64(tlm=gic_g2t.tlm)
gic.amba_s = gic_t2a.amba
system.gic_hub = SubSystem()
system.gic_hub.gic_a2t = gic_a2t
system.gic_hub.gic_t2g = gic_t2g
system.gic_hub.gic_g2t = gic_g2t
system.gic_hub.gic_t2a = gic_t2a
self.voltage_domain = VoltageDomain(voltage=cpu_voltage)
self.clk_domain = SrcClockDomain(clock=cpu_clock,
voltage_domain=self.voltage_domain)
# Setup CPU
assert num_cpus <= 4
CpuClasses = [FastModelCortexA76x1, FastModelCortexA76x2,
FastModelCortexA76x3, FastModelCortexA76x4]
CpuClass = CpuClasses[num_cpus - 1]
cpu = CpuClass(GICDISABLE=False)
for core in cpu.cores:
core.semihosting_enable = False
core.RVBARADDR = 0x10
core.redistributor = gic.redistributor
core.createThreads()
core.createInterruptController()
self.cpus = [ cpu ]
a2t = AmbaToTlmBridge64(amba=cpu.amba)
t2g = TlmToGem5Bridge64(tlm=a2t.tlm, gem5=system.membus.slave)
system.gic_hub.a2t = a2t
system.gic_hub.t2g = t2g
system.addCpuCluster(self, num_cpus)
def requireCaches(self):
return False
def memoryMode(self):
return 'atomic_noncaching'
def addL1(self):
pass
def addL2(self, clk_domain):
pass
def connectMemSide(self, bus):
pass
def simpleSystem(BaseSystem, caches, mem_size, platform=None, **kwargs):
"""
Create a simple system example. The base class in configurable so
that it is possible (e.g) to link the platform (hardware configuration)
with a baremetal ArmSystem or with a LinuxArmSystem.
"""
class SimpleSystem(BaseSystem):
cache_line_size = 64
def __init__(self, caches, mem_size, platform=None, **kwargs):
super(SimpleSystem, self).__init__(**kwargs)
self.voltage_domain = VoltageDomain(voltage="1.0V")
self.clk_domain = SrcClockDomain(
clock="1GHz",
voltage_domain=Parent.voltage_domain)
if platform is None:
self.realview = VExpress_GEM5_V1()
else:
self.realview = platform
if hasattr(self.realview.gic, 'cpu_addr'):
self.gic_cpu_addr = self.realview.gic.cpu_addr
self.flags_addr = self.realview.realview_io.pio_addr + 0x30
self.membus = MemBus()
self.intrctrl = IntrControl()
self.terminal = Terminal()
self.vncserver = VncServer()
self.iobus = IOXBar()
# CPUs->PIO
self.iobridge = Bridge(delay='50ns')
# Device DMA -> MEM
mem_range = self.realview._mem_regions[0]
assert long(mem_range.size()) >= long(Addr(mem_size))
self.mem_ranges = [
AddrRange(start=mem_range.start, size=mem_size) ]
self._caches = caches
if self._caches:
self.iocache = IOCache(addr_ranges=[self.mem_ranges[0]])
else:
self.dmabridge = Bridge(delay='50ns',
ranges=[self.mem_ranges[0]])
self._clusters = []
self._num_cpus = 0
def attach_pci(self, dev):
self.realview.attachPciDevice(dev, self.iobus)
def connect(self):
self.iobridge.master = self.iobus.slave
self.iobridge.slave = self.membus.master
if self._caches:
self.iocache.mem_side = self.membus.slave
self.iocache.cpu_side = self.iobus.master
else:
self.dmabridge.master = self.membus.slave
self.dmabridge.slave = self.iobus.master
if hasattr(self.realview.gic, 'cpu_addr'):
self.gic_cpu_addr = self.realview.gic.cpu_addr
self.realview.attachOnChipIO(self.membus, self.iobridge)
self.realview.attachIO(self.iobus)
self.system_port = self.membus.slave
def numCpuClusters(self):
return len(self._clusters)
def addCpuCluster(self, cpu_cluster, num_cpus):
assert cpu_cluster not in self._clusters
assert num_cpus > 0
self._clusters.append(cpu_cluster)
self._num_cpus += num_cpus
def numCpus(self):
return self._num_cpus
def addCaches(self, need_caches, last_cache_level):
if not need_caches:
# connect each cluster to the memory hierarchy
for cluster in self._clusters:
cluster.connectMemSide(self.membus)
return
cluster_mem_bus = self.membus
assert last_cache_level >= 1 and last_cache_level <= 3
for cluster in self._clusters:
cluster.addL1()
if last_cache_level > 1:
for cluster in self._clusters:
cluster.addL2(cluster.clk_domain)
if last_cache_level > 2:
max_clock_cluster = max(self._clusters,
key=lambda c: c.clk_domain.clock[0])
self.l3 = L3(clk_domain=max_clock_cluster.clk_domain)
self.toL3Bus = L2XBar(width=64)
self.toL3Bus.master = self.l3.cpu_side
self.l3.mem_side = self.membus.slave
cluster_mem_bus = self.toL3Bus
# connect each cluster to the memory hierarchy
for cluster in self._clusters:
cluster.connectMemSide(cluster_mem_bus)
return SimpleSystem(caches, mem_size, platform, **kwargs)