blob: bff0d3e7230e105b2559aaa985d7656a26dd2ada [file] [log] [blame]
/*
* Copyright (c) 2010-2014 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2007-2008 The Florida State University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Stephen Hines
*/
#include "arch/arm/insts/macromem.hh"
#include <sstream>
#include "arch/arm/generated/decoder.hh"
#include "arch/arm/insts/neon64_mem.hh"
using namespace std;
using namespace ArmISAInst;
namespace ArmISA
{
MacroMemOp::MacroMemOp(const char *mnem, ExtMachInst machInst,
OpClass __opClass, IntRegIndex rn,
bool index, bool up, bool user, bool writeback,
bool load, uint32_t reglist) :
PredMacroOp(mnem, machInst, __opClass)
{
uint32_t regs = reglist;
uint32_t ones = number_of_ones(reglist);
uint32_t mem_ops = ones;
// Copy the base address register if we overwrite it, or if this instruction
// is basically a no-op (we have to do something)
bool copy_base = (bits(reglist, rn) && load) || !ones;
bool force_user = user & !bits(reglist, 15);
bool exception_ret = user & bits(reglist, 15);
bool pc_temp = load && writeback && bits(reglist, 15);
if (!ones) {
numMicroops = 1;
} else if (load) {
numMicroops = ((ones + 1) / 2)
+ ((ones % 2 == 0 && exception_ret) ? 1 : 0)
+ (copy_base ? 1 : 0)
+ (writeback? 1 : 0)
+ (pc_temp ? 1 : 0);
} else {
numMicroops = ones + (writeback ? 1 : 0);
}
microOps = new StaticInstPtr[numMicroops];
uint32_t addr = 0;
if (!up)
addr = (ones << 2) - 4;
if (!index)
addr += 4;
StaticInstPtr *uop = microOps;
// Add 0 to Rn and stick it in ureg0.
// This is equivalent to a move.
if (copy_base)
*uop++ = new MicroAddiUop(machInst, INTREG_UREG0, rn, 0);
unsigned reg = 0;
while (mem_ops != 0) {
// Do load operations in pairs if possible
if (load && mem_ops >= 2 &&
!(mem_ops == 2 && bits(regs,INTREG_PC) && exception_ret)) {
// 64-bit memory operation
// Find 2 set register bits (clear them after finding)
unsigned reg_idx1;
unsigned reg_idx2;
// Find the first register
while (!bits(regs, reg)) reg++;
replaceBits(regs, reg, 0);
reg_idx1 = force_user ? intRegInMode(MODE_USER, reg) : reg;
// Find the second register
while (!bits(regs, reg)) reg++;
replaceBits(regs, reg, 0);
reg_idx2 = force_user ? intRegInMode(MODE_USER, reg) : reg;
// Load into temp reg if necessary
if (reg_idx2 == INTREG_PC && pc_temp)
reg_idx2 = INTREG_UREG1;
// Actually load both registers from memory
*uop = new MicroLdr2Uop(machInst, reg_idx1, reg_idx2,
copy_base ? INTREG_UREG0 : rn, up, addr);
if (!writeback && reg_idx2 == INTREG_PC) {
// No writeback if idx==pc, set appropriate flags
(*uop)->setFlag(StaticInst::IsControl);
(*uop)->setFlag(StaticInst::IsIndirectControl);
if (!(condCode == COND_AL || condCode == COND_UC))
(*uop)->setFlag(StaticInst::IsCondControl);
else
(*uop)->setFlag(StaticInst::IsUncondControl);
}
if (up) addr += 8;
else addr -= 8;
mem_ops -= 2;
} else {
// 32-bit memory operation
// Find register for operation
unsigned reg_idx;
while (!bits(regs, reg)) reg++;
replaceBits(regs, reg, 0);
reg_idx = force_user ? intRegInMode(MODE_USER, reg) : reg;
if (load) {
if (writeback && reg_idx == INTREG_PC) {
// If this instruction changes the PC and performs a
// writeback, ensure the pc load/branch is the last uop.
// Load into a temp reg here.
*uop = new MicroLdrUop(machInst, INTREG_UREG1,
copy_base ? INTREG_UREG0 : rn, up, addr);
} else if (reg_idx == INTREG_PC && exception_ret) {
// Special handling for exception return
*uop = new MicroLdrRetUop(machInst, reg_idx,
copy_base ? INTREG_UREG0 : rn, up, addr);
} else {
// standard single load uop
*uop = new MicroLdrUop(machInst, reg_idx,
copy_base ? INTREG_UREG0 : rn, up, addr);
}
// Loading pc as last operation? Set appropriate flags.
if (!writeback && reg_idx == INTREG_PC) {
(*uop)->setFlag(StaticInst::IsControl);
(*uop)->setFlag(StaticInst::IsIndirectControl);
if (!(condCode == COND_AL || condCode == COND_UC))
(*uop)->setFlag(StaticInst::IsCondControl);
else
(*uop)->setFlag(StaticInst::IsUncondControl);
}
} else {
*uop = new MicroStrUop(machInst, reg_idx, rn, up, addr);
}
if (up) addr += 4;
else addr -= 4;
--mem_ops;
}
// Load/store micro-op generated, go to next uop
++uop;
}
if (writeback && ones) {
// Perform writeback uop operation
if (up)
*uop++ = new MicroAddiUop(machInst, rn, rn, ones * 4);
else
*uop++ = new MicroSubiUop(machInst, rn, rn, ones * 4);
// Write PC after address writeback?
if (pc_temp) {
if (exception_ret) {
*uop = new MicroUopRegMovRet(machInst, 0, INTREG_UREG1);
} else {
*uop = new MicroUopRegMov(machInst, INTREG_PC, INTREG_UREG1);
}
(*uop)->setFlag(StaticInst::IsControl);
(*uop)->setFlag(StaticInst::IsIndirectControl);
if (!(condCode == COND_AL || condCode == COND_UC))
(*uop)->setFlag(StaticInst::IsCondControl);
else
(*uop)->setFlag(StaticInst::IsUncondControl);
if (rn == INTREG_SP)
(*uop)->setFlag(StaticInst::IsReturn);
++uop;
}
}
--uop;
(*uop)->setLastMicroop();
microOps[0]->setFirstMicroop();
/* Take the control flags from the last microop for the macroop */
if ((*uop)->isControl())
setFlag(StaticInst::IsControl);
if ((*uop)->isCondCtrl())
setFlag(StaticInst::IsCondControl);
if ((*uop)->isUncondCtrl())
setFlag(StaticInst::IsUncondControl);
if ((*uop)->isIndirectCtrl())
setFlag(StaticInst::IsIndirectControl);
if ((*uop)->isReturn())
setFlag(StaticInst::IsReturn);
for (StaticInstPtr *uop = microOps; !(*uop)->isLastMicroop(); uop++) {
(*uop)->setDelayedCommit();
}
}
PairMemOp::PairMemOp(const char *mnem, ExtMachInst machInst, OpClass __opClass,
uint32_t size, bool fp, bool load, bool noAlloc,
bool signExt, bool exclusive, bool acrel,
int64_t imm, AddrMode mode,
IntRegIndex rn, IntRegIndex rt, IntRegIndex rt2) :
PredMacroOp(mnem, machInst, __opClass)
{
bool post = (mode == AddrMd_PostIndex);
bool writeback = (mode != AddrMd_Offset);
if (load) {
// Use integer rounding to round up loads of size 4
numMicroops = (post ? 0 : 1) + ((size + 4) / 8) + (writeback ? 1 : 0);
} else {
numMicroops = (post ? 0 : 1) + (size / 4) + (writeback ? 1 : 0);
}
microOps = new StaticInstPtr[numMicroops];
StaticInstPtr *uop = microOps;
rn = makeSP(rn);
if (!post) {
*uop++ = new MicroAddXiSpAlignUop(machInst, INTREG_UREG0, rn,
post ? 0 : imm);
}
if (fp) {
if (size == 16) {
if (load) {
*uop++ = new MicroLdFp16Uop(machInst, rt,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*uop++ = new MicroLdFp16Uop(machInst, rt2,
post ? rn : INTREG_UREG0, 16, noAlloc, exclusive, acrel);
} else {
*uop++ = new MicroStrQBFpXImmUop(machInst, rt,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*uop++ = new MicroStrQTFpXImmUop(machInst, rt,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*uop++ = new MicroStrQBFpXImmUop(machInst, rt2,
post ? rn : INTREG_UREG0, 16, noAlloc, exclusive, acrel);
*uop++ = new MicroStrQTFpXImmUop(machInst, rt2,
post ? rn : INTREG_UREG0, 16, noAlloc, exclusive, acrel);
}
} else if (size == 8) {
if (load) {
*uop++ = new MicroLdPairFp8Uop(machInst, rt, rt2,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
} else {
*uop++ = new MicroStrFpXImmUop(machInst, rt,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*uop++ = new MicroStrFpXImmUop(machInst, rt2,
post ? rn : INTREG_UREG0, 8, noAlloc, exclusive, acrel);
}
} else if (size == 4) {
if (load) {
*uop++ = new MicroLdrDFpXImmUop(machInst, rt, rt2,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
} else {
*uop++ = new MicroStrDFpXImmUop(machInst, rt, rt2,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
}
}
} else {
if (size == 8) {
if (load) {
*uop++ = new MicroLdPairUop(machInst, rt, rt2,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
} else {
*uop++ = new MicroStrXImmUop(machInst, rt, post ? rn : INTREG_UREG0,
0, noAlloc, exclusive, acrel);
*uop++ = new MicroStrXImmUop(machInst, rt2, post ? rn : INTREG_UREG0,
size, noAlloc, exclusive, acrel);
}
} else if (size == 4) {
if (load) {
if (signExt) {
*uop++ = new MicroLdrDSXImmUop(machInst, rt, rt2,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
} else {
*uop++ = new MicroLdrDUXImmUop(machInst, rt, rt2,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
}
} else {
*uop++ = new MicroStrDXImmUop(machInst, rt, rt2,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
}
}
}
if (writeback) {
*uop++ = new MicroAddXiUop(machInst, rn, post ? rn : INTREG_UREG0,
post ? imm : 0);
}
assert(uop == &microOps[numMicroops]);
(*--uop)->setLastMicroop();
microOps[0]->setFirstMicroop();
for (StaticInstPtr *curUop = microOps;
!(*curUop)->isLastMicroop(); curUop++) {
(*curUop)->setDelayedCommit();
}
}
BigFpMemImmOp::BigFpMemImmOp(const char *mnem, ExtMachInst machInst,
OpClass __opClass, bool load, IntRegIndex dest,
IntRegIndex base, int64_t imm) :
PredMacroOp(mnem, machInst, __opClass)
{
numMicroops = load ? 1 : 2;
microOps = new StaticInstPtr[numMicroops];
StaticInstPtr *uop = microOps;
if (load) {
*uop = new MicroLdFp16Uop(machInst, dest, base, imm);
} else {
*uop = new MicroStrQBFpXImmUop(machInst, dest, base, imm);
(*uop)->setDelayedCommit();
*++uop = new MicroStrQTFpXImmUop(machInst, dest, base, imm);
}
(*uop)->setLastMicroop();
microOps[0]->setFirstMicroop();
}
BigFpMemPostOp::BigFpMemPostOp(const char *mnem, ExtMachInst machInst,
OpClass __opClass, bool load, IntRegIndex dest,
IntRegIndex base, int64_t imm) :
PredMacroOp(mnem, machInst, __opClass)
{
numMicroops = load ? 2 : 3;
microOps = new StaticInstPtr[numMicroops];
StaticInstPtr *uop = microOps;
if (load) {
*uop++ = new MicroLdFp16Uop(machInst, dest, base, 0);
} else {
*uop++= new MicroStrQBFpXImmUop(machInst, dest, base, 0);
*uop++ = new MicroStrQTFpXImmUop(machInst, dest, base, 0);
}
*uop = new MicroAddXiUop(machInst, base, base, imm);
(*uop)->setLastMicroop();
microOps[0]->setFirstMicroop();
for (StaticInstPtr *curUop = microOps;
!(*curUop)->isLastMicroop(); curUop++) {
(*curUop)->setDelayedCommit();
}
}
BigFpMemPreOp::BigFpMemPreOp(const char *mnem, ExtMachInst machInst,
OpClass __opClass, bool load, IntRegIndex dest,
IntRegIndex base, int64_t imm) :
PredMacroOp(mnem, machInst, __opClass)
{
numMicroops = load ? 2 : 3;
microOps = new StaticInstPtr[numMicroops];
StaticInstPtr *uop = microOps;
if (load) {
*uop++ = new MicroLdFp16Uop(machInst, dest, base, imm);
} else {
*uop++ = new MicroStrQBFpXImmUop(machInst, dest, base, imm);
*uop++ = new MicroStrQTFpXImmUop(machInst, dest, base, imm);
}
*uop = new MicroAddXiUop(machInst, base, base, imm);
(*uop)->setLastMicroop();
microOps[0]->setFirstMicroop();
for (StaticInstPtr *curUop = microOps;
!(*curUop)->isLastMicroop(); curUop++) {
(*curUop)->setDelayedCommit();
}
}
BigFpMemRegOp::BigFpMemRegOp(const char *mnem, ExtMachInst machInst,
OpClass __opClass, bool load, IntRegIndex dest,
IntRegIndex base, IntRegIndex offset,
ArmExtendType type, int64_t imm) :
PredMacroOp(mnem, machInst, __opClass)
{
numMicroops = load ? 1 : 2;
microOps = new StaticInstPtr[numMicroops];
StaticInstPtr *uop = microOps;
if (load) {
*uop = new MicroLdFp16RegUop(machInst, dest, base,
offset, type, imm);
} else {
*uop = new MicroStrQBFpXRegUop(machInst, dest, base,
offset, type, imm);
(*uop)->setDelayedCommit();
*++uop = new MicroStrQTFpXRegUop(machInst, dest, base,
offset, type, imm);
}
(*uop)->setLastMicroop();
microOps[0]->setFirstMicroop();
}
BigFpMemLitOp::BigFpMemLitOp(const char *mnem, ExtMachInst machInst,
OpClass __opClass, IntRegIndex dest,
int64_t imm) :
PredMacroOp(mnem, machInst, __opClass)
{
numMicroops = 1;
microOps = new StaticInstPtr[numMicroops];
microOps[0] = new MicroLdFp16LitUop(machInst, dest, imm);
microOps[0]->setLastMicroop();
microOps[0]->setFirstMicroop();
}
VldMultOp::VldMultOp(const char *mnem, ExtMachInst machInst, OpClass __opClass,
unsigned elems, RegIndex rn, RegIndex vd, unsigned regs,
unsigned inc, uint32_t size, uint32_t align, RegIndex rm) :
PredMacroOp(mnem, machInst, __opClass)
{
assert(regs > 0 && regs <= 4);
assert(regs % elems == 0);
numMicroops = (regs > 2) ? 2 : 1;
bool wb = (rm != 15);
bool deinterleave = (elems > 1);
if (wb) numMicroops++;
if (deinterleave) numMicroops += (regs / elems);
microOps = new StaticInstPtr[numMicroops];
RegIndex rMid = deinterleave ? VecSpecialElem : vd * 2;
uint32_t noAlign = TLB::MustBeOne;
unsigned uopIdx = 0;
switch (regs) {
case 4:
microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
size, machInst, rMid, rn, 0, align);
microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
size, machInst, rMid + 4, rn, 16, noAlign);
break;
case 3:
microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
size, machInst, rMid, rn, 0, align);
microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon8Uop>(
size, machInst, rMid + 4, rn, 16, noAlign);
break;
case 2:
microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
size, machInst, rMid, rn, 0, align);
break;
case 1:
microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon8Uop>(
size, machInst, rMid, rn, 0, align);
break;
default:
// Unknown number of registers
microOps[uopIdx++] = new Unknown(machInst);
}
if (wb) {
if (rm != 15 && rm != 13) {
microOps[uopIdx++] =
new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
} else {
microOps[uopIdx++] =
new MicroAddiUop(machInst, rn, rn, regs * 8);
}
}
if (deinterleave) {
switch (elems) {
case 4:
assert(regs == 4);
microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon8Uop>(
size, machInst, vd * 2, rMid, inc * 2);
break;
case 3:
assert(regs == 3);
microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon6Uop>(
size, machInst, vd * 2, rMid, inc * 2);
break;
case 2:
assert(regs == 4 || regs == 2);
if (regs == 4) {
microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon4Uop>(
size, machInst, vd * 2, rMid, inc * 2);
microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon4Uop>(
size, machInst, vd * 2 + 2, rMid + 4, inc * 2);
} else {
microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon4Uop>(
size, machInst, vd * 2, rMid, inc * 2);
}
break;
default:
// Bad number of elements to deinterleave
microOps[uopIdx++] = new Unknown(machInst);
}
}
assert(uopIdx == numMicroops);
for (unsigned i = 0; i < numMicroops - 1; i++) {
MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
assert(uopPtr);
uopPtr->setDelayedCommit();
}
microOps[0]->setFirstMicroop();
microOps[numMicroops - 1]->setLastMicroop();
}
VldSingleOp::VldSingleOp(const char *mnem, ExtMachInst machInst,
OpClass __opClass, bool all, unsigned elems,
RegIndex rn, RegIndex vd, unsigned regs,
unsigned inc, uint32_t size, uint32_t align,
RegIndex rm, unsigned lane) :
PredMacroOp(mnem, machInst, __opClass)
{
assert(regs > 0 && regs <= 4);
assert(regs % elems == 0);
unsigned eBytes = (1 << size);
unsigned loadSize = eBytes * elems;
unsigned loadRegs M5_VAR_USED =
(loadSize + sizeof(uint32_t) - 1) / sizeof(uint32_t);
assert(loadRegs > 0 && loadRegs <= 4);
numMicroops = 1;
bool wb = (rm != 15);
if (wb) numMicroops++;
numMicroops += (regs / elems);
microOps = new StaticInstPtr[numMicroops];
RegIndex ufp0 = VecSpecialElem;
unsigned uopIdx = 0;
switch (loadSize) {
case 1:
microOps[uopIdx++] = new MicroLdrNeon1Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
break;
case 2:
if (eBytes == 2) {
microOps[uopIdx++] = new MicroLdrNeon2Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
} else {
microOps[uopIdx++] = new MicroLdrNeon2Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
}
break;
case 3:
microOps[uopIdx++] = new MicroLdrNeon3Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
break;
case 4:
switch (eBytes) {
case 1:
microOps[uopIdx++] = new MicroLdrNeon4Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
break;
case 2:
microOps[uopIdx++] = new MicroLdrNeon4Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
break;
case 4:
microOps[uopIdx++] = new MicroLdrNeon4Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
}
break;
case 6:
microOps[uopIdx++] = new MicroLdrNeon6Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
break;
case 8:
switch (eBytes) {
case 2:
microOps[uopIdx++] = new MicroLdrNeon8Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
break;
case 4:
microOps[uopIdx++] = new MicroLdrNeon8Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
}
break;
case 12:
microOps[uopIdx++] = new MicroLdrNeon12Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
case 16:
microOps[uopIdx++] = new MicroLdrNeon16Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
default:
// Unrecognized load size
microOps[uopIdx++] = new Unknown(machInst);
}
if (wb) {
if (rm != 15 && rm != 13) {
microOps[uopIdx++] =
new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
} else {
microOps[uopIdx++] =
new MicroAddiUop(machInst, rn, rn, loadSize);
}
}
switch (elems) {
case 4:
assert(regs == 4);
switch (size) {
case 0:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon2to8Uop<uint8_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon2to8Uop<uint8_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
case 1:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon2to8Uop<uint16_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon2to8Uop<uint16_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
case 2:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon4to8Uop<uint32_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon4to8Uop<uint32_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
break;
case 3:
assert(regs == 3);
switch (size) {
case 0:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon2to6Uop<uint8_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon2to6Uop<uint8_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
case 1:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon2to6Uop<uint16_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon2to6Uop<uint16_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
case 2:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon4to6Uop<uint32_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon4to6Uop<uint32_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
break;
case 2:
assert(regs == 2);
assert(loadRegs <= 2);
switch (size) {
case 0:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon2to4Uop<uint8_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon2to4Uop<uint8_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
case 1:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon2to4Uop<uint16_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon2to4Uop<uint16_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
case 2:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon2to4Uop<uint32_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon2to4Uop<uint32_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
break;
case 1:
assert(regs == 1 || (all && regs == 2));
assert(loadRegs <= 2);
for (unsigned offset = 0; offset < regs; offset++) {
switch (size) {
case 0:
if (all) {
microOps[uopIdx++] =
new MicroUnpackAllNeon2to2Uop<uint8_t>(
machInst, (vd + offset) * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] =
new MicroUnpackNeon2to2Uop<uint8_t>(
machInst, (vd + offset) * 2, ufp0, inc * 2, lane);
}
break;
case 1:
if (all) {
microOps[uopIdx++] =
new MicroUnpackAllNeon2to2Uop<uint16_t>(
machInst, (vd + offset) * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] =
new MicroUnpackNeon2to2Uop<uint16_t>(
machInst, (vd + offset) * 2, ufp0, inc * 2, lane);
}
break;
case 2:
if (all) {
microOps[uopIdx++] =
new MicroUnpackAllNeon2to2Uop<uint32_t>(
machInst, (vd + offset) * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] =
new MicroUnpackNeon2to2Uop<uint32_t>(
machInst, (vd + offset) * 2, ufp0, inc * 2, lane);
}
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
}
break;
default:
// Bad number of elements to unpack
microOps[uopIdx++] = new Unknown(machInst);
}
assert(uopIdx == numMicroops);
for (unsigned i = 0; i < numMicroops - 1; i++) {
MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
assert(uopPtr);
uopPtr->setDelayedCommit();
}
microOps[0]->setFirstMicroop();
microOps[numMicroops - 1]->setLastMicroop();
}
VstMultOp::VstMultOp(const char *mnem, ExtMachInst machInst, OpClass __opClass,
unsigned elems, RegIndex rn, RegIndex vd, unsigned regs,
unsigned inc, uint32_t size, uint32_t align, RegIndex rm) :
PredMacroOp(mnem, machInst, __opClass)
{
assert(regs > 0 && regs <= 4);
assert(regs % elems == 0);
numMicroops = (regs > 2) ? 2 : 1;
bool wb = (rm != 15);
bool interleave = (elems > 1);
if (wb) numMicroops++;
if (interleave) numMicroops += (regs / elems);
microOps = new StaticInstPtr[numMicroops];
uint32_t noAlign = TLB::MustBeOne;
RegIndex rMid = interleave ? VecSpecialElem : vd * 2;
unsigned uopIdx = 0;
if (interleave) {
switch (elems) {
case 4:
assert(regs == 4);
microOps[uopIdx++] = newNeonMixInst<MicroInterNeon8Uop>(
size, machInst, rMid, vd * 2, inc * 2);
break;
case 3:
assert(regs == 3);
microOps[uopIdx++] = newNeonMixInst<MicroInterNeon6Uop>(
size, machInst, rMid, vd * 2, inc * 2);
break;
case 2:
assert(regs == 4 || regs == 2);
if (regs == 4) {
microOps[uopIdx++] = newNeonMixInst<MicroInterNeon4Uop>(
size, machInst, rMid, vd * 2, inc * 2);
microOps[uopIdx++] = newNeonMixInst<MicroInterNeon4Uop>(
size, machInst, rMid + 4, vd * 2 + 2, inc * 2);
} else {
microOps[uopIdx++] = newNeonMixInst<MicroInterNeon4Uop>(
size, machInst, rMid, vd * 2, inc * 2);
}
break;
default:
// Bad number of elements to interleave
microOps[uopIdx++] = new Unknown(machInst);
}
}
switch (regs) {
case 4:
microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
size, machInst, rMid, rn, 0, align);
microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
size, machInst, rMid + 4, rn, 16, noAlign);
break;
case 3:
microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
size, machInst, rMid, rn, 0, align);
microOps[uopIdx++] = newNeonMemInst<MicroStrNeon8Uop>(
size, machInst, rMid + 4, rn, 16, noAlign);
break;
case 2:
microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
size, machInst, rMid, rn, 0, align);
break;
case 1:
microOps[uopIdx++] = newNeonMemInst<MicroStrNeon8Uop>(
size, machInst, rMid, rn, 0, align);
break;
default:
// Unknown number of registers
microOps[uopIdx++] = new Unknown(machInst);
}
if (wb) {
if (rm != 15 && rm != 13) {
microOps[uopIdx++] =
new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
} else {
microOps[uopIdx++] =
new MicroAddiUop(machInst, rn, rn, regs * 8);
}
}
assert(uopIdx == numMicroops);
for (unsigned i = 0; i < numMicroops - 1; i++) {
MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
assert(uopPtr);
uopPtr->setDelayedCommit();
}
microOps[0]->setFirstMicroop();
microOps[numMicroops - 1]->setLastMicroop();
}
VstSingleOp::VstSingleOp(const char *mnem, ExtMachInst machInst,
OpClass __opClass, bool all, unsigned elems,
RegIndex rn, RegIndex vd, unsigned regs,
unsigned inc, uint32_t size, uint32_t align,
RegIndex rm, unsigned lane) :
PredMacroOp(mnem, machInst, __opClass)
{
assert(!all);
assert(regs > 0 && regs <= 4);
assert(regs % elems == 0);
unsigned eBytes = (1 << size);
unsigned storeSize = eBytes * elems;
unsigned storeRegs M5_VAR_USED =
(storeSize + sizeof(uint32_t) - 1) / sizeof(uint32_t);
assert(storeRegs > 0 && storeRegs <= 4);
numMicroops = 1;
bool wb = (rm != 15);
if (wb) numMicroops++;
numMicroops += (regs / elems);
microOps = new StaticInstPtr[numMicroops];
RegIndex ufp0 = VecSpecialElem;
unsigned uopIdx = 0;
switch (elems) {
case 4:
assert(regs == 4);
switch (size) {
case 0:
microOps[uopIdx++] = new MicroPackNeon8to2Uop<uint8_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
case 1:
microOps[uopIdx++] = new MicroPackNeon8to2Uop<uint16_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
case 2:
microOps[uopIdx++] = new MicroPackNeon8to4Uop<uint32_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
break;
case 3:
assert(regs == 3);
switch (size) {
case 0:
microOps[uopIdx++] = new MicroPackNeon6to2Uop<uint8_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
case 1:
microOps[uopIdx++] = new MicroPackNeon6to2Uop<uint16_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
case 2:
microOps[uopIdx++] = new MicroPackNeon6to4Uop<uint32_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
break;
case 2:
assert(regs == 2);
assert(storeRegs <= 2);
switch (size) {
case 0:
microOps[uopIdx++] = new MicroPackNeon4to2Uop<uint8_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
case 1:
microOps[uopIdx++] = new MicroPackNeon4to2Uop<uint16_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
case 2:
microOps[uopIdx++] = new MicroPackNeon4to2Uop<uint32_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
break;
case 1:
assert(regs == 1 || (all && regs == 2));
assert(storeRegs <= 2);
for (unsigned offset = 0; offset < regs; offset++) {
switch (size) {
case 0:
microOps[uopIdx++] = new MicroPackNeon2to2Uop<uint8_t>(
machInst, ufp0, (vd + offset) * 2, inc * 2, lane);
break;
case 1:
microOps[uopIdx++] = new MicroPackNeon2to2Uop<uint16_t>(
machInst, ufp0, (vd + offset) * 2, inc * 2, lane);
break;
case 2:
microOps[uopIdx++] = new MicroPackNeon2to2Uop<uint32_t>(
machInst, ufp0, (vd + offset) * 2, inc * 2, lane);
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
}
break;
default:
// Bad number of elements to unpack
microOps[uopIdx++] = new Unknown(machInst);
}
switch (storeSize) {
case 1:
microOps[uopIdx++] = new MicroStrNeon1Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
break;
case 2:
if (eBytes == 2) {
microOps[uopIdx++] = new MicroStrNeon2Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
} else {
microOps[uopIdx++] = new MicroStrNeon2Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
}
break;
case 3:
microOps[uopIdx++] = new MicroStrNeon3Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
break;
case 4:
switch (eBytes) {
case 1:
microOps[uopIdx++] = new MicroStrNeon4Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
break;
case 2:
microOps[uopIdx++] = new MicroStrNeon4Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
break;
case 4:
microOps[uopIdx++] = new MicroStrNeon4Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
}
break;
case 6:
microOps[uopIdx++] = new MicroStrNeon6Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
break;
case 8:
switch (eBytes) {
case 2:
microOps[uopIdx++] = new MicroStrNeon8Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
break;
case 4:
microOps[uopIdx++] = new MicroStrNeon8Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
}
break;
case 12:
microOps[uopIdx++] = new MicroStrNeon12Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
case 16:
microOps[uopIdx++] = new MicroStrNeon16Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
default:
// Bad store size
microOps[uopIdx++] = new Unknown(machInst);
}
if (wb) {
if (rm != 15 && rm != 13) {
microOps[uopIdx++] =
new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
} else {
microOps[uopIdx++] =
new MicroAddiUop(machInst, rn, rn, storeSize);
}
}
assert(uopIdx == numMicroops);
for (unsigned i = 0; i < numMicroops - 1; i++) {
MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
assert(uopPtr);
uopPtr->setDelayedCommit();
}
microOps[0]->setFirstMicroop();
microOps[numMicroops - 1]->setLastMicroop();
}
VldMultOp64::VldMultOp64(const char *mnem, ExtMachInst machInst,
OpClass __opClass, RegIndex rn, RegIndex vd,
RegIndex rm, uint8_t eSize, uint8_t dataSize,
uint8_t numStructElems, uint8_t numRegs, bool wb) :
PredMacroOp(mnem, machInst, __opClass)
{
RegIndex vx = NumVecV8ArchRegs;
RegIndex rnsp = (RegIndex) makeSP((IntRegIndex) rn);
bool baseIsSP = isSP((IntRegIndex) rnsp);
numMicroops = wb ? 1 : 0;
int totNumBytes = numRegs * dataSize / 8;
assert(totNumBytes <= 64);
// The guiding principle here is that no more than 16 bytes can be
// transferred at a time
int numMemMicroops = totNumBytes / 16;
int residuum = totNumBytes % 16;
if (residuum)
++numMemMicroops;
numMicroops += numMemMicroops;
int numMarshalMicroops = numRegs / 2 + (numRegs % 2 ? 1 : 0);
numMicroops += numMarshalMicroops;
microOps = new StaticInstPtr[numMicroops];
unsigned uopIdx = 0;
uint32_t memaccessFlags = TLB::MustBeOne | (TLB::ArmFlags) eSize |
TLB::AllowUnaligned;
int i = 0;
for (; i < numMemMicroops - 1; ++i) {
microOps[uopIdx++] = new MicroNeonLoad64(
machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags,
baseIsSP, 16 /* accSize */, eSize);
}
microOps[uopIdx++] = new MicroNeonLoad64(
machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags, baseIsSP,
residuum ? residuum : 16 /* accSize */, eSize);
// Writeback microop: the post-increment amount is encoded in "Rm": a
// 64-bit general register OR as '11111' for an immediate value equal to
// the total number of bytes transferred (i.e. 8, 16, 24, 32, 48 or 64)
if (wb) {
if (rm != ((RegIndex) INTREG_X31)) {
microOps[uopIdx++] = new MicroAddXERegUop(machInst, rnsp, rnsp, rm,
UXTX, 0);
} else {
microOps[uopIdx++] = new MicroAddXiUop(machInst, rnsp, rnsp,
totNumBytes);
}
}
for (int i = 0; i < numMarshalMicroops; ++i) {
switch(numRegs) {
case 1: microOps[uopIdx++] = new MicroDeintNeon64_1Reg(
machInst, vd + (RegIndex) (2 * i), vx, eSize, dataSize,
numStructElems, 1, i /* step */);
break;
case 2: microOps[uopIdx++] = new MicroDeintNeon64_2Reg(
machInst, vd + (RegIndex) (2 * i), vx, eSize, dataSize,
numStructElems, 2, i /* step */);
break;
case 3: microOps[uopIdx++] = new MicroDeintNeon64_3Reg(
machInst, vd + (RegIndex) (2 * i), vx, eSize, dataSize,
numStructElems, 3, i /* step */);
break;
case 4: microOps[uopIdx++] = new MicroDeintNeon64_4Reg(
machInst, vd + (RegIndex) (2 * i), vx, eSize, dataSize,
numStructElems, 4, i /* step */);
break;
default: panic("Invalid number of registers");
}
}
assert(uopIdx == numMicroops);
for (int i = 0; i < numMicroops - 1; ++i) {
microOps[i]->setDelayedCommit();
}
microOps[numMicroops - 1]->setLastMicroop();
}
VstMultOp64::VstMultOp64(const char *mnem, ExtMachInst machInst,
OpClass __opClass, RegIndex rn, RegIndex vd,
RegIndex rm, uint8_t eSize, uint8_t dataSize,
uint8_t numStructElems, uint8_t numRegs, bool wb) :
PredMacroOp(mnem, machInst, __opClass)
{
RegIndex vx = NumVecV8ArchRegs;
RegIndex rnsp = (RegIndex) makeSP((IntRegIndex) rn);
bool baseIsSP = isSP((IntRegIndex) rnsp);
numMicroops = wb ? 1 : 0;
int totNumBytes = numRegs * dataSize / 8;
assert(totNumBytes <= 64);
// The guiding principle here is that no more than 16 bytes can be
// transferred at a time
int numMemMicroops = totNumBytes / 16;
int residuum = totNumBytes % 16;
if (residuum)
++numMemMicroops;
numMicroops += numMemMicroops;
int numMarshalMicroops = totNumBytes > 32 ? 2 : 1;
numMicroops += numMarshalMicroops;
microOps = new StaticInstPtr[numMicroops];
unsigned uopIdx = 0;
for (int i = 0; i < numMarshalMicroops; ++i) {
switch (numRegs) {
case 1: microOps[uopIdx++] = new MicroIntNeon64_1Reg(
machInst, vx + (RegIndex) (2 * i), vd, eSize, dataSize,
numStructElems, 1, i /* step */);
break;
case 2: microOps[uopIdx++] = new MicroIntNeon64_2Reg(
machInst, vx + (RegIndex) (2 * i), vd, eSize, dataSize,
numStructElems, 2, i /* step */);
break;
case 3: microOps[uopIdx++] = new MicroIntNeon64_3Reg(
machInst, vx + (RegIndex) (2 * i), vd, eSize, dataSize,
numStructElems, 3, i /* step */);
break;
case 4: microOps[uopIdx++] = new MicroIntNeon64_4Reg(
machInst, vx + (RegIndex) (2 * i), vd, eSize, dataSize,
numStructElems, 4, i /* step */);
break;
default: panic("Invalid number of registers");
}
}
uint32_t memaccessFlags = TLB::MustBeOne | (TLB::ArmFlags) eSize |
TLB::AllowUnaligned;
int i = 0;
for (; i < numMemMicroops - 1; ++i) {
microOps[uopIdx++] = new MicroNeonStore64(
machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags,
baseIsSP, 16 /* accSize */, eSize);
}
microOps[uopIdx++] = new MicroNeonStore64(
machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags, baseIsSP,
residuum ? residuum : 16 /* accSize */, eSize);
// Writeback microop: the post-increment amount is encoded in "Rm": a
// 64-bit general register OR as '11111' for an immediate value equal to
// the total number of bytes transferred (i.e. 8, 16, 24, 32, 48 or 64)
if (wb) {
if (rm != ((RegIndex) INTREG_X31)) {
microOps[uopIdx++] = new MicroAddXERegUop(machInst, rnsp, rnsp, rm,
UXTX, 0);
} else {
microOps[uopIdx++] = new MicroAddXiUop(machInst, rnsp, rnsp,
totNumBytes);
}
}
assert(uopIdx == numMicroops);
for (int i = 0; i < numMicroops - 1; i++) {
microOps[i]->setDelayedCommit();
}
microOps[numMicroops - 1]->setLastMicroop();
}
VldSingleOp64::VldSingleOp64(const char *mnem, ExtMachInst machInst,
OpClass __opClass, RegIndex rn, RegIndex vd,
RegIndex rm, uint8_t eSize, uint8_t dataSize,
uint8_t numStructElems, uint8_t index, bool wb,
bool replicate) :
PredMacroOp(mnem, machInst, __opClass),
eSize(0), dataSize(0), numStructElems(0), index(0),
wb(false), replicate(false)
{
RegIndex vx = NumVecV8ArchRegs;
RegIndex rnsp = (RegIndex) makeSP((IntRegIndex) rn);
bool baseIsSP = isSP((IntRegIndex) rnsp);
numMicroops = wb ? 1 : 0;
int eSizeBytes = 1 << eSize;
int totNumBytes = numStructElems * eSizeBytes;
assert(totNumBytes <= 64);
// The guiding principle here is that no more than 16 bytes can be
// transferred at a time
int numMemMicroops = totNumBytes / 16;
int residuum = totNumBytes % 16;
if (residuum)
++numMemMicroops;
numMicroops += numMemMicroops;
int numMarshalMicroops = numStructElems / 2 + (numStructElems % 2 ? 1 : 0);
numMicroops += numMarshalMicroops;
microOps = new StaticInstPtr[numMicroops];
unsigned uopIdx = 0;
uint32_t memaccessFlags = TLB::MustBeOne | (TLB::ArmFlags) eSize |
TLB::AllowUnaligned;
int i = 0;
for (; i < numMemMicroops - 1; ++i) {
microOps[uopIdx++] = new MicroNeonLoad64(
machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags,
baseIsSP, 16 /* accSize */, eSize);
}
microOps[uopIdx++] = new MicroNeonLoad64(
machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags, baseIsSP,
residuum ? residuum : 16 /* accSize */, eSize);
// Writeback microop: the post-increment amount is encoded in "Rm": a
// 64-bit general register OR as '11111' for an immediate value equal to
// the total number of bytes transferred (i.e. 8, 16, 24, 32, 48 or 64)
if (wb) {
if (rm != ((RegIndex) INTREG_X31)) {
microOps[uopIdx++] = new MicroAddXERegUop(machInst, rnsp, rnsp, rm,
UXTX, 0);
} else {
microOps[uopIdx++] = new MicroAddXiUop(machInst, rnsp, rnsp,
totNumBytes);
}
}
for (int i = 0; i < numMarshalMicroops; ++i) {
microOps[uopIdx++] = new MicroUnpackNeon64(
machInst, vd + (RegIndex) (2 * i), vx, eSize, dataSize,
numStructElems, index, i /* step */, replicate);
}
assert(uopIdx == numMicroops);
for (int i = 0; i < numMicroops - 1; i++) {
microOps[i]->setDelayedCommit();
}
microOps[numMicroops - 1]->setLastMicroop();
}
VstSingleOp64::VstSingleOp64(const char *mnem, ExtMachInst machInst,
OpClass __opClass, RegIndex rn, RegIndex vd,
RegIndex rm, uint8_t eSize, uint8_t dataSize,
uint8_t numStructElems, uint8_t index, bool wb,
bool replicate) :
PredMacroOp(mnem, machInst, __opClass),
eSize(0), dataSize(0), numStructElems(0), index(0),
wb(false), replicate(false)
{
RegIndex vx = NumVecV8ArchRegs;
RegIndex rnsp = (RegIndex) makeSP((IntRegIndex) rn);
bool baseIsSP = isSP((IntRegIndex) rnsp);
numMicroops = wb ? 1 : 0;
int eSizeBytes = 1 << eSize;
int totNumBytes = numStructElems * eSizeBytes;
assert(totNumBytes <= 64);
// The guiding principle here is that no more than 16 bytes can be
// transferred at a time
int numMemMicroops = totNumBytes / 16;
int residuum = totNumBytes % 16;
if (residuum)
++numMemMicroops;
numMicroops += numMemMicroops;
int numMarshalMicroops = totNumBytes > 32 ? 2 : 1;
numMicroops += numMarshalMicroops;
microOps = new StaticInstPtr[numMicroops];
unsigned uopIdx = 0;
for (int i = 0; i < numMarshalMicroops; ++i) {
microOps[uopIdx++] = new MicroPackNeon64(
machInst, vx + (RegIndex) (2 * i), vd, eSize, dataSize,
numStructElems, index, i /* step */, replicate);
}
uint32_t memaccessFlags = TLB::MustBeOne | (TLB::ArmFlags) eSize |
TLB::AllowUnaligned;
int i = 0;
for (; i < numMemMicroops - 1; ++i) {
microOps[uopIdx++] = new MicroNeonStore64(
machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags,
baseIsSP, 16 /* accsize */, eSize);
}
microOps[uopIdx++] = new MicroNeonStore64(
machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags, baseIsSP,
residuum ? residuum : 16 /* accSize */, eSize);
// Writeback microop: the post-increment amount is encoded in "Rm": a
// 64-bit general register OR as '11111' for an immediate value equal to
// the total number of bytes transferred (i.e. 8, 16, 24, 32, 48 or 64)
if (wb) {
if (rm != ((RegIndex) INTREG_X31)) {
microOps[uopIdx++] = new MicroAddXERegUop(machInst, rnsp, rnsp, rm,
UXTX, 0);
} else {
microOps[uopIdx++] = new MicroAddXiUop(machInst, rnsp, rnsp,
totNumBytes);
}
}
assert(uopIdx == numMicroops);
for (int i = 0; i < numMicroops - 1; i++) {
microOps[i]->setDelayedCommit();
}
microOps[numMicroops - 1]->setLastMicroop();
}
MacroVFPMemOp::MacroVFPMemOp(const char *mnem, ExtMachInst machInst,
OpClass __opClass, IntRegIndex rn,
RegIndex vd, bool single, bool up,
bool writeback, bool load, uint32_t offset) :
PredMacroOp(mnem, machInst, __opClass)
{
int i = 0;
// The lowest order bit selects fldmx (set) or fldmd (clear). These seem
// to be functionally identical except that fldmx is deprecated. For now
// we'll assume they're otherwise interchangable.
int count = (single ? offset : (offset / 2));
numMicroops = count * (single ? 1 : 2) + (writeback ? 1 : 0);
microOps = new StaticInstPtr[numMicroops];
int64_t addr = 0;
if (!up)
addr = 4 * offset;
bool tempUp = up;
for (int j = 0; j < count; j++) {
if (load) {
if (single) {
microOps[i++] = new MicroLdrFpUop(machInst, vd++, rn,
tempUp, addr);
} else {
microOps[i++] = new MicroLdrDBFpUop(machInst, vd++, rn,
tempUp, addr);
microOps[i++] = new MicroLdrDTFpUop(machInst, vd++, rn, tempUp,
addr + (up ? 4 : -4));
}
} else {
if (single) {
microOps[i++] = new MicroStrFpUop(machInst, vd++, rn,
tempUp, addr);
} else {
microOps[i++] = new MicroStrDBFpUop(machInst, vd++, rn,
tempUp, addr);
microOps[i++] = new MicroStrDTFpUop(machInst, vd++, rn, tempUp,
addr + (up ? 4 : -4));
}
}
if (!tempUp) {
addr -= (single ? 4 : 8);
// The microops don't handle negative displacement, so turn if we
// hit zero, flip polarity and start adding.
if (addr <= 0) {
tempUp = true;
addr = -addr;
}
} else {
addr += (single ? 4 : 8);
}
}
if (writeback) {
if (up) {
microOps[i++] =
new MicroAddiUop(machInst, rn, rn, 4 * offset);
} else {
microOps[i++] =
new MicroSubiUop(machInst, rn, rn, 4 * offset);
}
}
assert(numMicroops == i);
microOps[numMicroops - 1]->setLastMicroop();
for (StaticInstPtr *curUop = microOps;
!(*curUop)->isLastMicroop(); curUop++) {
MicroOp * uopPtr = dynamic_cast<MicroOp *>(curUop->get());
assert(uopPtr);
uopPtr->setDelayedCommit();
}
}
std::string
MicroIntImmOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss);
printIntReg(ss, ura);
ss << ", ";
printIntReg(ss, urb);
ss << ", ";
ccprintf(ss, "#%d", imm);
return ss.str();
}
std::string
MicroIntImmXOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss);
printIntReg(ss, ura);
ss << ", ";
printIntReg(ss, urb);
ss << ", ";
ccprintf(ss, "#%d", imm);
return ss.str();
}
std::string
MicroSetPCCPSR::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss);
ss << "[PC,CPSR]";
return ss.str();
}
std::string
MicroIntRegXOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss);
printIntReg(ss, ura);
ccprintf(ss, ", ");
printIntReg(ss, urb);
printExtendOperand(false, ss, (IntRegIndex)urc, type, shiftAmt);
return ss.str();
}
std::string
MicroIntMov::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss);
printIntReg(ss, ura);
ss << ", ";
printIntReg(ss, urb);
return ss.str();
}
std::string
MicroIntOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss);
printIntReg(ss, ura);
ss << ", ";
printIntReg(ss, urb);
ss << ", ";
printIntReg(ss, urc);
return ss.str();
}
std::string
MicroMemOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss);
if (isFloating())
printFloatReg(ss, ura);
else
printIntReg(ss, ura);
ss << ", [";
printIntReg(ss, urb);
ss << ", ";
ccprintf(ss, "#%d", imm);
ss << "]";
return ss.str();
}
std::string
MicroMemPairOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss);
printIntReg(ss, dest);
ss << ",";
printIntReg(ss, dest2);
ss << ", [";
printIntReg(ss, urb);
ss << ", ";
ccprintf(ss, "#%d", imm);
ss << "]";
return ss.str();
}
}